Friction stir processing (FSP) and friction stir welding (FSW) methods are two types of severe plastic deformation (SPD) processes. SPD methods are useful in producing nanoparticle or ultrafine-grained materials (UFG) microstructure. In FSP and FSW, a rotating cylinder tool (pin), which could take the form of various geometries, pierces into the workpiece with a particular angle and depth. Furthermore, it refines grains by moving in the direction of interest along with the tool's movements. The uniform distribution of nanoparticles in the stir zone is one of the main challenges of using nanoparticles. Controlling variables such as tool rotational speed, tool travel speed, number of passes, etc., the distribution of nanoparticles and the grain size can be changed in the stir zone. Microstructure, texture, and grain size directly affect the hardness of the stir zone. Recent studies have shown that using nanoparticles enhances the mechanical properties of the stir zone. The main aim of this review article is to collect the results of previous articles focused on analyzing the operation of FSW and FSP, the microstructure of the stir zone in FSW and FSP, the impact of effective parameters on the microstructure after adding nanoparticles to the stir zone, and the applications of FSW and FSP in various industries. Moreover, the fundamental mechanisms of grain refinement throughout FSW and FSP, including morphology and grain boundaries forming, were discussed. |
[5] K. Vasu, H. Chelladurai, A. Ramaswamy, S. Malarvizhi, and V. Balasubramanian, “Effect of fusion welding processes on tensile properties of armor grade, high thickness, non-heat treatable aluminum alloy joints,” Defence Technology, 2019; 15 (3),353–362. doi: 10.1016.j.dt.2018.11.004.
[32] LiqiangWang, LechunXie, PinquanShen, QingFan, WenWang, KuaisheWang, WeijieLu, LinHua, and Lai-ChangZhang, “Surface microstructure and m echanical properties of Ti-6Al-4V.Ag nanocomposite prepared by FSP,” Mater Characterization, 2019;153,175–183. doi: 10.1016.j.matchar.2019.05.002.
[37] M. Naseri, M. Reihanian, and E. Borhani, “EBSD characterization of nano.ultrafine structured Al.Brass composite produced by severe plastic deformation,” J of Ultrafine Grained and Nanostructured Mater, 2018; 51 (2), 123–138. doi: 10.22059.JUFGNSM.2018.02.04.
- V. Mathur, S. R Prabhu B, M. Patel G. C. & A. K. Shettigar, “Reinforcement of titanium dioxide nanoparticles in aluminum alloy AA 5052 through friction stir process,” Advances in Materials and Processing Technologies, 2019; 5( 2), 329–337. doi: 10.1080.2374068X.2019.1585072.
- E. B. Moustafa, W. S. Abushanab, A. Melaibari, A. V. Mikhaylovskaya, M. S. Abdel-Wahab, and A. O. Mosleh, “Nano-surface composite coating reinforced by Ta2 C, Al2 O3 and MWCNTs nanoparticles for aluminum base via FSP,” Coatings, 2021; 11(12). doi: 10.3390.coatings11121496.
- F. Ostovan, S. Amanollah, M. Toozandehjani, and E. Shafiei, “Fabrication of Al5083 surface hybrid nanocomposite reinforced by CNTs and Al2O3 nanoparticles using friction stir processing,” J of Composite Mater, 2020; 54(8), 1107–1117. doi: 10.1177.0021998319874849.
- M. Yousefieh, M. Tamizifar, S. M. A. Boutorabi, and E. Borhani, “Optimization of friction stir welding parameters for mechanical properties of Nano.UFG Aluminum- scandium alloys by using design of experiment method," JWSTI, 2018; 3(2),79-89.
- S. S. M. Mehrian, M. Rahsepar, F. Khodabakhshi, and A. P. Gerlich, “Effects of friction stir processing on the microstructure, mechanical and corrosion behaviors of an aluminum-magnesium alloy,” Surface and Coatings Technology, 2021; 405. doi: 10.1016.j.surfcoat.2020.126647.
- M. Alvand, H. Abdollah-Pour, E. Borhani, and M. Naseri “Effect of rotational and welding speeds on microstructure and mechanical properties of friction stir welded AA2024 aluminum sheets.”8th Congress & 3rd International Eng Mater & Metallurgy, 2014; 18-19.
- M. Fekri Soostani, R. Taghiabadi, M. Jafarzadegan “Improving the mechanical properties of Al-Ni-Fe alloys through friction stir processing,” MetallurgicalEngineering,2017; 20(2), 121-131. doi: http:..dx.doi.org. 10.22076.me.2017.63859.1136.
- B. Rahmatian, K. Dehghani, and S. E. Mirsalehi, “Effect of adding SiC nanoparticles to nugget zone of thick AA5083 aluminum alloy joined by double-sided friction stir welding,” J of Manufacturing Processes, 2020; 52(2019), 152–164. doi: 10.1016.j.jmapro.2020.01.046.
- L. M. Marzoli, A. V. Strombeck, J. F. Dos Santos, C. Gambaro, and L. M. Volpone, “Friction stir welding of an AA6061.Al2O3.20p reinforced alloy,” Composites Science and Technology, 2006; 66(2). doi: 10.1016.j.compscitech.2005.04.048.
- M. Jweeg, M. H. Tolephih, M.A. Sattar, “EFFECT OF FRICTION STIR WELDING PARAMETERS (ROTATION AND TRANSVERSE) SPEED ON THE TRANSIENT TEMPERATURE DISTRIBUTION IN FRICTION STIR WELDING OF AA 7020-T53,” ARPN Journal of Engineering and Applied Sciences, 2012; 7(4).
- M. Ghaffarpour, B. M. Dariani, A. Hossein Kokabi, and N. A. Razani, “Friction stir welding parameters optimization of heterogeneous tailored welded blank sheets of aluminum alloys 6061 and 5083 using response surface methodology,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 226, no. 12, 2012, doi: 10.1177.0954405412461864.
- M. Ghosh, R. K. Gupta, and M. M. Husain, “Friction stir welding of stainless steel to al alloy: Effect of thermal condition on weld nugget microstructure,” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 45, no. 2, 2014, doi: 10.1007.s11661-013-2036-9.
- S. Balos, D. L. Zlatanovic, P. Janjatovic, M. Dramicanin, D. Rajnovic, and L. Sidjanin, “Wear Resistance Increase by Friction Stir Processing for Partial Magnesium Replacement in Aluminium Alloys,” in IOP Conference Series: Materials Science and Engineering, 2018, vol. 329, no. 1, doi: 10.1088.1757-899X.329.1.012017.
- R. Butola, L. Tyagi, R. M. Singari, Q. Murtaza, H. Kumar, and D. Nayak, “Mechanical and wear performance of Al.SiC surface composite prepared through friction stir processing,” Materials Research Express, vol. 8, no. 1, 2021, doi: 10.1088.2053-1591.abd89d.
- R. W. Armstrong, “Hall-Petch Relationship : Use in Characterizing Properties of Aluminum and Aluminum Alloys*," Materials Science, 2016; Corpus ID: 37797939.
- M. Khoobroo, A. Maleki, B. Niroumand, “Improving the Surface Properties of Gray Cast Iron through In-Situ Alloying,” Journal of Advanced Materials in Engineering, 2017; 36 ( 3), 1–10. DOI:10.29252.JAME.36.3.1,Corpus ID: 139113259.
- M. M. El Rayes, M. S. Soliman, A. T. Abbas, D. Y. Pimenov, I. N. Erdakov, and M. M. Abdel-Mawla, “Effect of Feed Rate in friction stir welding on the Mechanical and Microstructural Properties of AA5754 Joints,” Advances in Mater Sci and Eng, 2019; (12). doi: 10.1155.2019.4156176.
- Sen Lin, Jianguo Tang, Shengdan Liu, Yunlai Deng, Huaqiang Lin, Hua Ji, Lingying Ye, Xinming Zhang, “Effect of travel speed on microstructure and mechanical properties of FSW joints for Al-Zn-Mg alloy,” Materials, 2019; 12( 24). https:..doi.org.10.3390.ma12244178.
- J. J. Shen, H. J. Liu, and F. Cui, “Effect of welding speed on microstructure and mechanical properties of friction stir welded copper,” Mater and Design, 2010; 31(8),3937–3942. doi: 10.1016.j.matdes.2010.03.027.
- S. Yahya Abadi, M. Abbasi, “Modification of Mechanical Properties of Al6061 Aluminum Alloy Joint Formed Using Friction Stir Welding by Increasing the Cooling Rate and Application of Vibration,” Modares Mechanical Engineering, 2019, 19(6), 1551-1558.
- D. Kocańda, A. Górka, and D. Zasada, “Formation of a Metal Coating by Means of Friction Stir Processing,” ICAF 2011 Structural Integrity: Influence of Efficiency and Green Imperatives,2011.
- M. Yousefieh, A. Jabbari, “Modeling of temperature in friction stir welding of duplex stainless steel using multivariate lagrangian methods, linear extrapolation, and multiple linear regression,” JWSTI, 2020; 6 (2),65-76.
- G. Buffa, G. Campanile, L. Fratini, and A. Prisco, “Friction stir welding of lap joints: Influence of process parameters on the metallurgical and mechanical properties,” Materials Science and Engineering A, 2009; 519( 1–2), 19–26. doi: 10.1016.j.msea.2009.04.046.
- L. N. Tufaro, I. Manzoni, and H. G. Svoboda, “Effect of Heat Input on AA5052 Friction Stir Welds Characteristics,” Procedia Mater Sci, 2015; 8, 914–923. doi: 10.1016.j.mspro.2015.04.152.
- M. Aissani, S. Gachi, F. Boubenider, and Y. Benkedda, “Design and optimization of friction stir welding tool,” Mater and Manufacturing Processes, 2010; 25(11). doi: 10.1080.10426910903536733.
- John Baruch L, R. Raju, and V. Balasubramanian, “Effect of Tool Pin Profile on Microstructure and Hardness of Friction Stir Processed Aluminum Die Casting Alloy Study,” European Journal of Scientific Research, 2012;70(3),375-385.
- P. Sadeesh, M.VenkateshKannan, V.Rajkumar, P.Avinash, N.Arivazhagan, K.Devendranath Ramkumar, S.Narayanan, “Studies on friction stir welding of aa 2024 and aa 6061 dissimilar metals,” in Procedia Engineering, 2014; 75. doi: 10.1016.j.proeng.2013.11.031.
- S. Emamian, M. Awang, P. Hussai, B. Meyghani, and A. Zafar, “Influences of tool pin profile on the friction stir welding of AA6061,” ARPN J of Eng and Applied Scis, 2016; 11( 20).
- K. Ullegaddi, V. Murthy, R. N. Harsha, and Manjunatha, “Friction Stir Welding Tool Design and Their Effect on Welding of AA-6082 T6,” Mater Today: Proceedings, 2017; 4(8). doi: 10.1016.j.matpr.2017.07.133.
- N. Z. Khan, A. N. Siddiquee, and Z. A. Khan, “Proposing a new relation for selecting tool pin length in friction stir welding process,” Journal of the International Measurement Confederation, 2018; 129, 112–118. doi: 10.1016.j.measurement.
- V. Msomi and S. Mabuwa, Analysis of material positioning towards microstructure of the friction stir processed AA1050.AA6082 dissimilar joint,” Advances in Industrial and Manufacturing Eng, 2020; 1. doi: 10.1016.j.aime.2020.100002.
- K. S. Wang, W. Guo, W. Wang, and W. L. Wang, “Effect of accumulation of friction stir processing on microstructure and properties of cast pure aluminum L2,” Hangkong Cailiao Xuebao.Journal of Aeronautical Materials, 2009; 29(5), 29–32.
- W. Wang, K. Wang, Q. Guo, and N. Wu, “Effect of friction stir processing on microstructure and mechanical properties of cast AZ31 magnesium alloy,” Xiyou Jinshu Cailiao Yu Gongcheng.Rare Metal Materials and Engineering,2012; 41(9), 1522–1526. doi: 10.1016.s1875-5372(13)60004-1.
- S. Mabuwa, V. Msomi, “The effect of friction stir processing on the friction stir welded AA1050-H14 and AA6082-T6 joints,” in Materials Today: Proceedings, 2019; 26. doi: 10.1016.j.matpr.2019.10.039.
- D. A. Dragatogiannis, E. P. Koumoulos, I. A. Kartsonakis, D. I. Pantelis, P. N. Karakizis, and C. A. Charitidis, “Dissimilar Friction Stir Welding Between 5083 and 6082 Al Alloys Reinforced With TiC Nanoparticles,” Materials and Manufacturing Processes, 2016; 31(16),2101–2114. doi: 10.1080.10426914.2015.1103856.
- H. C. Madhu, P. Ajay Kumar, C. S. Perugu, and S. V. Kailas, “Microstructure and Mechanical Properties of Friction Stir Process Derived Al-TiO2 Nanocomposite,” Journal of Materials Engineering and Performance, 2018; 27( 3), 1318–1326.doi: 10.1007.s11665-018-3188-y.
- E. Moustafa, “Effect of multi-pass friction stir processing on mechanical properties for AA2024.Al2O3 nanocomposites,” Materials, 2017; 10( 9). doi: 10.3390.ma10091053.
- T. Singh, S. K. Tiwari, and D. K. Shukla, “Effects of Al2O3 nanoparticles volume fractions on microstructural and mechanical characteristics of friction stir welded nanocomposites,” Nanocomposites,2020; 6( 2), 76–84. doi: 10.1080.20550324.2020.1776504.
- S. E.Rashed, H. A.Hassan, T. G.Abu-El-Yazied, A. B. El-Shabasy, “SURFACE IMPROVEMENT OF 7075 ALLOY USING FRICTION STIR,” JOURNAL OF THE EGYPTIAN SOCIETY OF TRIBOLOGY, 2020; 17(2),1–12.
- T. Shinoda, M. Kawai, H. Takegami, “NOVEL PROCESS OF SURFACE MODIFICATION OF ALUMINIUM CASTS APPLYING FRICTION STIR PHENOMENON,” Materials Science,2005; DOI:10.1007.BF03266469, Corpus ID: 137169086
- H. Uzun, “Friction stir welding of SiC particulate reinforced AA2124 aluminum alloy matrix composite,” Materials and Design, 2007; 28( 5).doi: 10.1016.j.matdes.2006.03.023.
- R. Bauri, D. Yadav, and G. Suhas, “Effect of friction stir processing (FSP) on microstructure and properties of Al-TiC in situ composite,” Materials Science and Engineering A, 2011; 528(13–140). doi: 10.1016.j.msea.2011.02.085.
- Y. Zhao, X. Huang, Q. Li, J. Huang, and K. Yan, “Effect of friction stir processing with B4C particles on the microstructure and mechanical properties of 6061 aluminum alloy,” International Journal of Advanced Manufacturing Technology, 2015; 78, (9–12). doi: 10.1007.s00170-014-6748-9.
- M. Farahmand Nikoo, H. Azizi, N. Parvin, and H. Yousefpour Naghibi, “The influence of heat treatment on microstructure and wear properties of friction stir welded AA6061-T6.Al2O3 nanocomposite joint at four different traveling speed,” Journal of Manufacturing Processes, 2016; 22, 90–98.doi: 10.1016.j.jmapro.2016.01.003.
- M. Sarkari Khorrami,” Friction stir welding of ultrafine grained aluminum alloys: a review”, Journal of Ultrafine Grained and Nanostructured Materials, 2021; 54(1), 1-20. doi: 10.22059.jufgnsm.2021.01.01
- Z. Sajuri et al., “Cold-rolling strain hardening effect on the microstructure, serration-flow behaviour and dislocation density of friction stir welded AA5083,” Metals, 2020; 10(1). doi: 10.3390.met10010070.
- H. Mehdi , R. S. Mishra, “Effect of Friction Stir Processing on Microstructure and Mechanical Properties of TIG Welded Joint of AA6061 and AA7075,” Defence Technology, 2021;17,715-727. doi: 10.1016.j.dt.2020.04.014.
- H. Mirzadeh, “ High strain rate superplasticity via friction stir processing (FSP): A review“, Materials Science & Engineering A, 2021; 819, 141499. doi:10.1016.j.msea.2021.141499.
|