تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,115,384 |
تعداد دریافت فایل اصل مقاله | 97,219,472 |
Anthocyanin Extract From Purple Sweet Potato Improving Neurotransmitter and Locomotor in Chronic Stressed-mice | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 2، دوره 18، شماره 3، مهر 2024، صفحه 333-344 اصل مقاله (883.75 K) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.18.3.1005405 | ||
نویسندگان | ||
Nia Kurnianingsih* 1؛ Ariella Ramadhini Hakim2؛ Daffa Salsabila2؛ Agwin Fahmi Fahanani1؛ Novita Titis Harbiyanti1؛ Retty Ratnawati1 | ||
1Department of Physiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia. | ||
2Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia. | ||
چکیده | ||
Background: Prolonged stress plays an essential role in depression disorder through brain inflammation and neurotransmitter imbalances. The natural plant antioxidant is promising to resist the negative impact of stress. Objectives: This study aimed to analyze the effect of total anthocyanin (ANC) extracts from purple sweet potatoes (PSP) on brain neurotransmitters, inflammation, and locomotor behavior in the chronic-stressed mice model. Methods: Twenty male adult BALB/c mice were assigned to control, stress (STR), STR+ANC (10 mg/kg body weight [BW]), STR+ANC (20 mg/kg BW), and STR+ANC (40 mg/kg BW). Restraint stress was applied 2 h/d for 14 days. The enzyme-linked immunosorbent assay (ELISA) was performed to measure brain dopamine, gamma-aminobutyric acid (GABA), and corticosterone levels. The locomotor behavior was analyzed using an open field test before and after ANC treatment. In silico, molecular docking was carried out between ANC and monoamine oxidase-B (MAO-B) enzyme. Results: Administration of ANC decreased brain corticosterone levels. The dopamine neurotransmitter decreased in the stress-induced group and increased following ANC treatment. Increased GABA levels were observed in the stressed and treated groups. Locomotor analysis showed reduced total distance movement and velocity after ANC treatment. Molecular prediction showed that ANC can inhibit the MAO-B enzymes. Conclusion: The ANC extracted from PSP relieved brain inflammation and modified the neurotransmitters of dopamine and GABA, affecting the locomotor function of chronically stressed-induced mice. Furthermore, in vivo studies are necessary to evaluate the molecular mechanism of ANC from PSP in chronic stress exposure, particularly on MAO enzyme regulation. | ||
کلیدواژهها | ||
Anthocyanin (ANC)؛ Brain؛ Dopamine؛ Gamma-aminobutyric acid (GABA)؛ Stress | ||
عنوان مقاله [English] | ||
عصاره آنتوسیانین از سیب زمینی شیرین بنفش با تغییر کورتیکوسترون مغز در موش های تحت استرس مزمن، انتقال دهنده های عصبی و رفتار حرکتی را بهبود می بخشد. | ||
نویسندگان [English] | ||
نیا کورنیانینگ سی1؛ آرلیا رامادینی حکیم2؛ دافا سال سابیلا2؛ آگوین فهمی فهانانی1؛ نویتا تیتیس هربیانتی1؛ رتی راتناواتی1 | ||
1گروه فیزیولوژی، دانشکده پزشکی، دانشگاه براویجایا، مالانگ ،اندونزی- مرکز تحقیقات مولکول هوشمند منابع ژنتیک طبیعی، دانشگاه براویجایا، مالانگ، اندونزی | ||
2برنامه لیسانس علوم پزشکی، دانشکده پزشکی، دانشگاه براویجایا،مالانگ، اندونزی | ||
کلیدواژهها [English] | ||
آنتوسیانین, مغز, دوپامین, گابا, استرس | ||
اصل مقاله | ||
Introduction PSP are a primary staple food with high ANC content. ANC from PSP was demonstrated as an antioxidant as opposed to oxidative stress on neuronal cells (Zhong et al., 2023) and had a neuroprotective effect on ischemia stroke model animals (Wati, et al., 2018). However, the impact of total ANC from PSP on neurotransmitter and locomotor behavior has remained unexplored. Therefore, further studies must be developed in animal stress models to provide intelligible biomechanism of ANC from PSP to improve the behavior through neurotransmitter regulation. Thus, this study aimed to evaluate the effect of ANC from PSP on brain corticosterone, dopamine, GABA level, and locomotor behaviors in chronic stress model mice. This study also provided computational prediction of ANC effect in inhibiting neurotransmitter degradation as monoamine oxidase (MAO) inhibitor by molecular docking interaction.
Enzyme-linked immunosorbent assay (ELISA)
All ANC have interaction on residue ARG42. The interaction of MAO and cyanidin resulted in the most positive energy binding, that is -370 kJ/mol. Furthermore, the energy binding of MAO with cyanidin-3-O-glucoside and peonidin-3-O-glucoside was -492 kJ/mol and -498.4 kJ/mol, respectively. Compared to ANCs, rasagiline as a control ligand has an energy binding of 264.8 kJ/mol, indicating a more positive value than ANCs (Table 1). The left panels show a 3D interaction structure between ligand and MAO protein. Central panels show ligand interaction, which is visualized as a type of interaction in the right panel.
Baik J. H. (2020). Stress and the dopaminergic reward system. Experimental & Molecular Medicine, 52(12), 1879–1890. [DOI:10.1038/s12276-020-00532-4] [PMID] [PMCID] Bitencourt-Ferreira, G., & de Azevedo, W. F., Jr (2019). Molegro virtual docker for docking. Methods in Molecular Biology, 2053, 149–167. [DOI:10.1007/978-1-4939-9752-7_10] [PMID] Bloomfield, M. A., McCutcheon, R. A., Kempton, M., Freeman, T. P., & Howes, O. (2019). The effects of psychosocial stress on dopaminergic function and the acute stress response. eLife, 8, e46797. [DOI:10.7554/eLife.46797] [PMID] [PMCID] Casagrande, S., DeMoranville, K. J., Trost, L., Pierce, B., Bryła, A., & Dzialo, M., et al. (2020). Dietary antioxidants attenuate the endocrine stress response during long-duration flight of a migratory bird. Proceedings. Biological Sciences, 287(1929), 20200744. [DOI:10.1098/rspb.2020.0744] [PMID] [PMCID] Chaves, T., Fazekas, C. L., Horváth, K., Correia, P., Szabó, A., & Török, B., et al. (2021). Stress adaptation and the brainstem with focus on corticotropin-releasing hormone. International Journal of Molecular Sciences, 22(16), 9090. [DOI:10.3390/ijms22169090] [PMID] [PMCID] Chukwu, O. O., Emelike, C. U., Konyefom, N. G., Ibekailo, S. N., Ekakitie, O. O., & Ghasi, S., et al. (2022). Histological studies of the heart and biochemical changes due to the perinatal consumption of hibiscus sabdariffa (flavonoid-rich extract) to feed-restricted rats on offspring. Iranian Journal of Veterinary Medicine, 17(1), 37-46. [DOI:10.22059/IJVM.17.1.1005272] Dwiwibangga, Y., Safitri, A., & Fatchiyah, F. (2022). Profiling of phytochemical compounds of east java red rice bran has the high-value biological activities as antioxidant and antidiabetic. Indonesian Journal of Chemistry, 22(5), 1304-1320. [DOI:10.22146/ijc.73432] Fazlelahi, Z., Kaboutari, J., Zendehdel, M., & Panahi, N. (2023). Effects of intracerebroventricular injection of the steroidal and non-steroidal anti-inflammatory drugs on the seizures during the estrous cycle in rat. Archives of Razi Institute, 78(3), 807-813. [DOI:10.22092/ARI.2022.360115.2553] Ghazi Ghanim, K., Saab Kadhim, M., Hameed Abed Ali, B., & Jawad, R. A. (2023). The relation between increasing anxiety and prolactin-releasing peptide in rats. Archives of Razi Institute, 78(1), 175-178. [DOI:10.22092/ARI.2022.359519.2439] Ghotbitabar, Z., Asghari, A., Hassanpour, S., & Jahandideh, A. (2022). [Effects of quebracho tannin extract on testicular ischemia-/reperfusion (Persian)]. Iranian Journal of Veterinary Medicine, 16(4), 423-431. [DOI:10.22059/IJVM.2022.333335.1005206] Iturra-Mena, A. M., Arriagada-Solimano, M., Luttecke-Anders, A., & Dagnino-Subiabre, A. (2018). Effects of prenatal stress on anxiety- and depressive-like behaviours are sex-specific in prepubertal rats. Journal of Neuroendocrinology, 30(7), e12609. [DOI:10.1111/jne.12609] [PMID] Jia, J., He, L., Yang, J., Shuai, Y., Yang, J., & Wu, Y., et al. (2021). A pair of dopamine neurons mediate chronic stress signals to induce learning deficit in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 118(42), e2023674118. [DOI:10.1073/pnas.2023674118] [PMID] [PMCID] Joëls M. (2018). Corticosteroids and the brain. The Journal of Endocrinology, 238(3), R121–R130. [DOI:10.1530/JOE-18-0226] [PMID] Hall, J. E. (2016). Guyton and hall textbook of medical physiology. Edinburgh: Elsevier Health Sciences. [Link] Juliana, N., Mohd Azmi, N. A. S., Effendy, N., Mohd Fahmi Teng, N. I., Azmani, S., & Baharom, N., et al. (2022). Exploring the associated factors of depression, anxiety, and stress among healthcare shift workers during the COVID-19 pandemic. International Journal of Environmental Research and Public Health, 19(15), 9420. [DOI:10.3390/ijerph19159420] [PMID] [PMCID] Karst, H., & Joëls, M. (2016). Severe stress hormone conditions cause an extended window of excitability in the mouse basolateral amygdala. Neuropharmacology, 110(Pt A), 175–180. [DOI:10.1016/j.neuropharm.2016.07.027] [PMID] Khodadadeh, A., Hassanpour, S., & Akbari, G. (2020). [Effects of hesperidin during pregnancy on antidepressant-like behaviour in postpartum mice (Persian)]. Iranian Journal of Veterinary Medicine, 14(03), 261-272. [DOI:10.22059/IJVM.2020.297314.1005062] Kurnianingsih, N., Artamevia, D., Winarta, A. K., & Wulandari, A. P. (2023). Modifying effect of anthocyanin from purple sweet potatoes on visceral fat tissue inflammation and liver oxidative stress in psychological stress-induced mice. Journal of Tropical Life Scienc, 13(2), 393-398. [DOI:10.11594/jtls.13.02.18.N] Kurnianingsih, N., Ratnawati, R., Nazwar, T. A., Ali, M., & Fatchiyah, F. (2020). The behavioral effect of anthocyanin from purple sweet potatoes on prenatally stressed offspring mice. Systematic Reviews in Pharmacy, 11(10), 482-490. [DOI:10.31838/srp.2020.10.72] Kurnianingsih, N., Ratnawati, R., Nazwar, T. A., Ali, M., & Fatchiyah, F. (2021). Purple sweet potatoes from east java of indonesia revealed the macronutrient, anthocyanin compound and antidepressant activity candidate. Medical Archives, 75(2), 94–100. [DOI:10.5455/medarh.2021.75.94-100] [PMID] [PMCID] Liu, Y., Zhao, J., & Guo, W. (2018). Emotional roles of mono-aminergic neurotransmitters in major depressive disorder and anxiety disorders. Frontiers in Psychology, 9, 2201.[DOI:10.3389/fpsyg.2018.02201] [PMID] [PMCID] Lowes, D. C., Chamberlin, L. A., Kretsge, L. N., Holt, E. S., Abbas, A. I., & Park, A. J., et al. (2021). Ventral tegmental area GABA neurons mediate stress-induced blunted reward-seeking in mice. Nature Communications, 12(1), 3539. [DOI:10.1038/s41467-021-23906-2] [PMID] [PMCID] Nikjooy, N., Asghari, A., Hassanpour, S., & Arfaee, F. (2022). [Study of anti-nociceptive role of the manna of hedysarum and the neurotransmitter systems involved in mice (Persian)]. Iranian Journal of Veterinary Medicine, 16(3), 265-273. [DOI:10.22059/IJVM.2022.332803.1005202] Panossian, A. G., Efferth, T., Shikov, A. N., Pozharitskaya, O. N., Kuchta, K., & Mukherjee, P. K., et al. (2021). Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress- and aging-related diseases. Medicinal Research Reviews, 41(1), 630–703. [DOI:10.1002/med.21743] [PMID] [PMCID] Patetas, M. A., & Gartner, L. P. (2007). A textbook of neuroanatomy. Hoboken: John Wiley & Sons. [Link] Poulose, S. M., Fisher, D. R., Larson, J., Bielinski, D. F., Rimando, A. M., & Carey, A. N., et al. (2012). Anthocyanin-rich açai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells. Journal of Agricultural and Food Chemistry, 60(4), 1084–1093. [DOI:doi.org/10.1021/jf203989k] [PMID] Rahman, M. M., Ichiyanagi, T., Komiyama, T., Sato, S., & Konishi, T. (2008). Effects of anthocyanins on psychological stress-induced oxidative stress and neurotransmitter status. Journal of Agricultural and Food Chemistry, 56(16), 7545–7550. [DOI:10.1021/jf800930s] [PMID] Resae, A., Yousefi, M. H., Naeimi, S., & Mahdavi, A. (2023). [Effects of occupational formaldehyde exposure on passive avoidance conditioning and anxiety levels in wistar rats (Persian)]. Iranian Journal of Veterinary Medicine, 17(1), 65-74. [DOI:10.32598/ijvm.17.1.1005241] Reyhanditya, D., Hikmawati, V. F., Kurnianingsih, N., & Fatchiyah, F. (2022). Restraint stress impacts on behavioral changes and adrenal and kidney tissue histopathology of adult mice. Jurnal Kedokteran Brawijaya, 32(1), 1-7. [DOI:10.21776/ub.jkb.2022.032.01.1] Solmi, M., Miola, A., Croatto, G., Pigato, G., Favaro, A., Fornaro, M., et al. (2021). How can we improve antidepressant adherence in the management of depression? A targeted review and 10 clinical recommendations. Revista Brasileira de Psiquiatria, 43(2), 189–202. [DOI:10.1590/1516-4446-2020-0935] [PMID] [PMCID] Spiers, J. G., Chen, H. J., Sernia, C., & Lavidis, N. A. (2015). Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Frontiers in Neuroscience, 8, 456. [DOI:10.3389/fnins.2014.00456] [PMID] [PMCID] Vahid-Ansari, F., Zhang, M., Zahrai, A., & Albert, P. R. (2019). Overcoming resistance to selective serotonin reuptake inhibitors: Targeting serotonin, serotonin-1A receptors and adult neuroplasticity. Frontiers in Neuroscience, 13, 404. [DOI:10.3389/fnins.2019.00404] [PMID] [PMCID] Wati, E. R., Prasetyawan, S., Mahdi, C., Srihardyastutie, A., & Adnyana, M. O. (2018). Potential of anthocyanin from purple sweet potato (ipomoea batatas) to increase BDNF level and VEGF expression in the cerebellum of ischemic stroke rats. The Journal of Pure and Applied Chemistry Research, 7(1), 45-52. [DOI:10.21776/ub.jpacr.2018.007.01.363] Xie, L., Korkmaz, K. S., Braun, K., & Bock, J. (2013). Early life stress-induced histone acetylations correlate with activation of the synaptic plasticity genes Arc and Egr1 in the mouse hippocampus. Journal of Neurochemistry, 125(3), 457–464. [DOI:10.1111/jnc.12210] [PMID] Zhong, H., Xu, J., Yang, M., Hussain, M., Liu, X., & Feng, F., et al. (2023). Protective effect of anthocyanins against neurodegenerative diseases through the microbial-intestinal-brain axis: A critical review. Nutrients, 15(3), 496. [DOI:10.3390/nu15030496] [PMID] [PMCID] Zokaei, L., Akbari, E., Babapour, V., & Zendehdel, M. (2023). The modulatory role of orexin 1 receptor in nucleus accumbens (NAc) on spatial memory in rats. Archives of Razi Institute, 78(4), 1285–1294. [DOI:10.32592/ARI.2023.78.4.1285] [PMID] [PMCID] | ||
آمار تعداد مشاهده مقاله: 342 تعداد دریافت فایل اصل مقاله: 591 |