![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 162 |
تعداد شمارهها | 6,578 |
تعداد مقالات | 71,072 |
تعداد مشاهده مقاله | 125,693,494 |
تعداد دریافت فایل اصل مقاله | 98,922,967 |
The in Vitro Effect of Berberine Sulfate and Berberine Chloride on the Growth and Aflatoxin Production by Aspergillus flavus and Aspergillus parasiticus | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 8، دوره 18، شماره 2، تیر 2024، صفحه 223-232 اصل مقاله (1.49 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.18.2.1005399 | ||
نویسندگان | ||
Mohammad Sadegh Moradi1؛ Samin Kamkar2؛ Aghil Sharifzadeh* 2؛ Jalal Hassan3؛ Hojjatollah Shokri4؛ Javad Abbasi1 | ||
1Department of Animal and Poultry Health and Nutrition, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
2Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
3Division of Toxicology, Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
4Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran. | ||
چکیده | ||
Background: Aflatoxins are harmful mycotoxins that can contaminate animal and human food products. To prevent toxigenic fungi growth and aflatoxin production, researchers have long investigated plant compounds as potential inhibitory agents. Objectives: This study aimed to evaluate the in vitro effect of berberine sulfate and berberine chloride on the growth and aflatoxin production of Aspergillus flavus and Aspergillus parasiticus. Methods: The antifungal activity of berberine salts was determined according to the Clinical and Laboratory Standards Institute (CLSI) document M38-A3. The aflatoxin levels were measured using high-performance liquid chromatography (HPLC) method. Results: The berberine sulfate and berberine chloride showed inhibitory effects against both Aspergillus species, with minimum inhibitory concentration (MIC) ranging from 125 to 500 µg/mL. Berberine sulfate at 2000 μg/mL and berberine chloride at 1000 μg/mL completely inhibited the mycelial growth of A. flavus, while berberine chloride at 1000 μg/mL also completely inhibited the mycelial growth of A. parasiticus. Berberine sulfate at 2000 µg/mL reduced the mycelial growth of A. parasiticus by 96.7%. Conclusion: Berberine salts significantly decreased the total aflatoxin production of Aspergillus species at MIC/2 and MIC/4 concentrations (P˂0.05). The results suggest that berberine salts could be used as potential antifungal and anti-aflatoxigenic agents against toxigenic Aspergillus isolates. | ||
کلیدواژهها | ||
Aflatoxins؛ Aspergillus flavus؛ Aspergillus parasiticus؛ Berberine؛ Mycelial growth | ||
عنوان مقاله [English] | ||
اثر بربرین سولفات و بربرین کلرید در شرایط برونتنی بر رشد و تولید آفلاتوکسین توسط آسپرژیلوس فلاووس و آسپرژیلوس پارازیتیکوس | ||
نویسندگان [English] | ||
محمد صادق مرادی1؛ سمین کامکار2؛ عقیل شریف زاده2؛ جلال حسن3؛ حجت الله شکری4؛ جواد عباسی1 | ||
1گروه بهداشت و تغذیه دام و طیور، دانشکده دامپزشکی دانشگاه تهران، تهران، ایران. | ||
2گروه میکروبیولوژی و ایمونولوژی، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران. | ||
3بخش سمشناسی، گروه علوم زیستی مقایسهای، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران. | ||
4گروه پاتوبیولوژی، دانشکده دامپزشکی، دانشگاه تخصصی فناوریهای نوین آمل، آمل، ایران. | ||
چکیده [English] | ||
زمینه مطالعه: آفلاتوکسینها، سموم قارچی مضری هستند که میتوانند خوراک دام و محصولات غذایی را آلوده کنند. ترکیبات گیاهی بهعنوان عوامل بالقوه برای مهار رشد و تولید آفلاتوکسین توسط قارچهای توکسینزا مورد بررسی قرار گرفتهاند. هدف: این مطالعه باهدف بررسی اثر بربرین سولفات و بربرین کلرید در شرایط آزمایشگاهی بر رشد و تولید آفلاتوکسین در آسپرژیلوس فلاووس و آ. پارازیتیکوس انجام شد. روش کار: فعالیت ضدقارچی نمکهای بربرین براساس سند M38-A3 مؤسسه استانداردهای بالینی و آزمایشگاهی (CLSI) تعیین گردید. سطح آفلاتوکسین با استفاده از روش کروماتوگرافی مایع با کارایی بالا (HPLC) اندازهگیری شد. نتایج: حداقل غلظت بازدارندگی بربرین سولفات و بربرین کلرید علیه آسپرژیلوس فلاووس بهترتیب ۲۵۰ و ۱۲۵ میکروگرم بر میلیلیتر بود. این مقادیر برای آسپرژیلوس پارازیتیکوس بهترتیب ۵۰۰ و ۲۵۰ میکروگرم بر میلیلیتر محاسبه شد. بربرین سولفات با غلظت ۲۰۰۰ میکروگرم بر میلیلیتر و بربرین کلرید با غلظت ۱۰۰۰ میکروگرم در میلیلیتر منجر به مهار کامل رشد میسلیوم آسپرژیلوس فلاووس شد. علاوهبراین، بربرین سولفات با غلظت ۲۰۰۰ میکروگرم در میلیلیتر باعث کاهش 96/7 درصدی رشد میسلیوم آسپرژیلوس پارازیتیکوس شد، درحالیکه کلرید بربرین با غلظت ۱۰۰۰ میکروگرم در لیتر به مهار ۱۰۰ درصدی رشد میسلیوم منجر شد. نتیجهگیری نهایی: نمکهای بربرین تولید آفلاتوکسین کل توسط هر دو گونه آسپرژیلوس را در غلظتهای MIC/2 و MIC/4 بهطور معنیداری کاهش دادند (P ˂0/05). نتایج نشان میدهد که نمکهای بربرین میتوانند بهعنوان عوامل ضدقارچی و ضدآفلاتوکسیژنیک بالقوه در برابر جدایههای سمی آسپرژیلوس استفاده شوند. | ||
کلیدواژهها [English] | ||
آفلاتوکسینها, آسپرژیلوس فلاووس, آسپرژیلوس پارازیتیکوس, بربرین, رشد میسلیوم | ||
اصل مقاله | ||
Introduction
Berberine sulfate (2000 µg/mL) and berberine chloride (1000 µg/mL) exhibited a 100% growth inhibition of mycelia production by A. flavus. In addition, berberine sulfate at a concentration of 2000 µg/mL and berberine chloride at a concentration of 1000 µg/mL inhibited the growth of mycelia production by A. parasiticus by 96.7% and 100%, respectively (Table 2).
The effect of berberine chloride and berberine sulfate on aflatoxin production
According to Table 4, aflatoxin production by A. parasiticus treated with berberine sulfate and berberine chloride at MIC/2 concentration was significantly lower than MIC/4 concentration (P˂0.05). Also, berberine chloride exhibited a higher inhibitory effect on aflatoxin production than berberine sulfate by A. parasiticus (Figure 2). Berberine chloride caused a significant 100% reduction for aflatoxin G1 by A. parasiticus (Table 4).
At MIC/2 concentration, berberine chloride decreased aflatoxin production by A. flavus and A. parasiticus by 96.81% and 98.12%, respectively, 100% for aflatoxin B2, 98.9% for aflatoxin G1, 100% for aflatoxin G2 and 97.5% for total aflatoxin (P<0.05) (Figure 2).
Discussion
Al-Mudallal, N. H. (2023). The expression of MMP1 and MMP7 in mice liver after exposure to aflatoxin B1 using immunohistochemistry technique. Archives of Razi Institute, 78(1), 63-72. [DOI:10.22092/ari.2022.358774.2306] Arayne, M. S., Sultana, N., & Bahadur, S. S. (2007). The berberis story: Berberis vulgaris in therapeutics. Pakistan Journal of Pharmaceutical Sciences, 20(1), 83-92. [PMID] Bhadra, K., & Kumar, G. S. (2011). Therapeutic potential of nucleic acid-binding isoquinoline alkaloids: Binding aspects and implications for drug design. Medicinal Research Reviews, 31(6), 821-862. [DOI:10.1002/med.20202][PMID] Clinical and Laboratory Standards Institute (CLSI). (2008). Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; Approved standard. Wayne, PA: Clinical and Laboratory Standards Institute. [Link] da Silva, A. R., de Andrade Neto, J. B., da Silva, C. R., Campos, R.deS., Costa Silva, R. A., & Freitas, D. D., et al. (2016). Berberine antifungal activity in fluconazole-resistant pathogenic yeasts: Action mechanism evaluated by flow cytometry and biofilm growth inhibition in Candida spp. Antimicrobial Agents and Chemotherapy, 60(6), 3551-3557. [DOI:10.1128%2FAAC.01846-15][PMID] El-Zahar, K. M., Al-Jamaan, M. E., Al-Mutairi, F. R., Al-Hudiab, A. M., Al-Einzi, M. S., & Mohamed, A. A. (2022). Antioxidant, antibacterial, and antifungal activities of the ethanolic extract obtained from berberis vulgaris roots and leaves. Molecules, 27(18), 6114. [DOI:10.3390/molecules27186114][PMID] Geerlofs, L., He, Z., Xiao, S., & Xiao, Z. (2019). Efficacy of berberine as a preservative against mold and yeast in poultry feed. Approaches in Poultry, Dairy & Veterinary Sciences, 7(2). [DOI:10.31031/APDV.2019.07.000659] Ghareeb, D. A., Abd El-Wahab, A. E., Sarhan, E. E., Abu-Serie, M. M., & El Demellawy, M. A. (2013). Biological assessment of Berberis vulgaris and its active constituent, berberine: Antibacterial, antifungal and anti-hepatitis C virus (HCV) effect. Journal of Medicinal Plants Research, 7(21), 1529-1536. [Link] Ghavipanje, N., Fathi Nasri, M. H., & Vargas-Bello-Pérez, E. (2023). An insight into the potential of berberine in animal nutrition: Current knowledge and future perspectives. Journal of Animal Physiology and Animal Nutrition, 107(3), 808–829. [DOI:10.1111/jpn.13769][PMID] Gruber-Dorninger, C., Jenkins, T., & Schatzmayr, G. (2019). Global mycotoxin occurrence in feed: A ten-year survey. Toxins, 11(7), 375. [DOI:10.3390/toxins11070375][PMID] Hasankhani, T., Nikaein, D., Khosravi, A., Rahmati-Holasoo, H., & Hasankhany, M. (2023). The effect of echinacea purpurea l. (eastern purple coneflower) essential oil on hematological parameters and gut microbial population of zebrafish (danio rerio) with aflatoxicosis. Iranian Journal of Veterinary Medicine, 17(2), 173-182. [DOI:10.32598/IJVM.17.2.1005271] Hassan, J., Shams, G. R., & Meighani, H. (2015). Application of low density miniaturized dispersive liquid-liquid extraction method for determination of formaldehyde in aqueous samples (water, fruit juice and streptococcus vaccine) by HPLC-UV. Journal of Analytical Chemistry, 70, 1495-1500. [DOI:10.7868/S0044450215120099] Hu, Y., Zhang, J., Kong, W., Zhao, G., & Yang, M. (2017). Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. Food Chemistry, 220, 1-8. [DOI:10.1016/j.foodchem.2016.09.179][PMID] Ismail, N., Ghareeb, D., El-Sohaimy, S., EL-Demellawy, M., & El-Saied, M. (2020). Evaluation of the anti-Fusarium effect of Cinnamoum zeilanicum, Berberise vulgaris and Caluna vulgaris ethanolic extracts. International Journal of Cancer and Biomedical Research, 4(2), 143-150. [DOI:10.21608/jcbr.2020.30493.1039] Jard, G., Liboz, T., Mathieu, F., Guyonvarc'h, A., & Lebrihi, A. (2011). Review of mycotoxin reduction in food and feed: From prevention in the field to detoxification by adsorption or transformation. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 28(11), 1590-1609. [DOI:10.1080/19440049.2011.595377][PMID] Kadium, S. W., Semysim, A. A., & Sahib, R. A. (2023). Antifungal activity of phenols compound separated from quercus infectoria and citrullus colocynthis against toxic fungi. Archives of Razi Institute, 78(1), 297-303. [DOI:10.22092/ari.2022.358960.2347] Khorrami, R., Pooyanmehr, M., Soroor, M. E., & Gholami, S. (2022). Evaluation of some aflatoxins in feed ingredients of livestock and poultry by HPLC Method, a local study in Kermanshah Province. Iranian Journal of Veterinary Medicine, 16(3), 298-310. [DOI:10.22059/ijvm.2022.329690.1005192] Lei, G., Dan, H., Jinhua, L., Wei, Y., Song, G., & Li, W. (2011). Berberine and itraconazole are not synergistic in vitro against Aspergillus fumigatus isolated from clinical patients. Molecules, 16(11), 9218-9233. [DOI:10.3390/molecules16119218][PMID] Li, D. D., Xu, Y., Zhang, D. Z., Quan, H., Mylonakis, E., & Hu, D. D., et al. (2013). Fluconazole assists berberine to kill fluconazole-resistant Candida albicans. Antimicrobial Agents and Chemotherapy, 57(12), 6016-6027. [DOI:10.1128/aac.00499-13][PMID] Mahmoudvand, H., Ayatollahi Mousavi, S. A., Sepahvand, A., Sharififar, F., Ezatpour, B., & Gorohi, F., et al. (2014). Antifungal, antileishmanial, and cytotoxicity activities of various extracts of Berberis vulgaris (Berberidaceae) and its active principle berberine. International Scholarly Research Notices, 2014, 602436. [DOI:10.1155/2014/602436][PMID] Malekinezhad, P., Ellestad, L. E., Afzali, N., Farhangfar, S. H., Omidi, A., & Mohammadi, A. (2021). Evaluation of berberine efficacy in reducing the effects of aflatoxin B1 and ochratoxin A added to male broiler rations. Poultry Science, 100(2), 797-809. [DOI:10.1016/j.psj.2020.10.040][PMID] Mokhtari Hooyeh, M., Aminianfar, H., Sharifzadeh, A., Lalehpoor, M., & Samiee, N. (2022). An incidence of aflatoxicosis in hand-fed ewe lambs exhibiting icterus subsequent to hepatic failure and hemoglobinuria. Iranian Journal of Veterinary Medicine, 1-11. [DOI:10.22059/ijvm.2022.343852.1005279] Monson, M. S., Coulombe, R. A., & Reed, K. M. (2015). Aflatoxicosis: Lessons from toxicity and responses to aflatoxin B1 in poultry. Agriculture, 5(3), 742-777. [DOI:10.3390/agriculture5030742] Moretti, A., Logrieco, A. F., & Susca, A. (2017). Mycotoxins: An underhand food problem. In: A. Moretti, & A. Susca (Eds.), Mycotoxigenic Fungi. Methods in Molecular Biology, vol 1542. New York: Humana Press. [Link] Nakavuma, J. L., Kirabo, A., Bogere, P., Nabulime, M. M., Kaaya, A. N., & Gnonlonfin, B. (2020). Awareness of mycotoxins and occurrence of aflatoxins in poultry feeds and feed ingredients in selected regions of Uganda. International Journal of Food Contamination, 7(1), 1-10. [DOI:10.1186/s40550-020-00079-2] Ouyang, H., Luo, Y., Zhang, L., Li, Y., & Jin, C. (2010). Proteome analysis of Aspergillus fumigatus total membrane proteins identifies proteins associated with the glycoconjugates and cell wall biosynthesis using 2D LC-MS/MS. Molecular Biotechnology, 44(3), 177–189. [DOI:10.1007/s12033-009-9224-2][PMID] Patil, R. D., Sharma, R., & Asrani, R. K. (2014). Mycotoxicosis and its control in poultry: A review. Journal of Poultry Science and Technology, 2(1), 1-10. [Link] Safari, N., Mirabzadeh Ardakani, M., Hemmati, R., Parroni, A., Beccaccioli, M., & Reverberi, M. (2020). The potential of plant-based bioactive compounds on inhibition of aflatoxin B1 biosynthesis and down-regulation of aflR, aflM and aflP genes. Antibiotics, 9(11), 728. [DOI:10.3390/antibiotics9110728][PMID] Santos Pereira, C., C Cunha, S., & Fernandes, J. O. (2019). Prevalent mycotoxins in animal feed: Occurrence and analytical methods. Toxins, 11(5), 290. [DOI:10.3390%2Ftoxins11050290][PMID] Savoia, D. (2012). Plant-derived antimicrobial compounds: Alternatives to antibiotics. Future Microbiology, 7(8), 979–990.[DOI:10.2217/fmb.12.68][PMID] Tabeshpour, J., Imenshahidi, M., & Hosseinzadeh, H. (2017). A review of the effects of Berberis vulgaris and its major component, berberine, in metabolic syndrome. Iranian Journal of Basic Medical Sciences, 20(5), 557-568. [DOI:10.22038%2FIJBMS.2017.8682] Tintu, I., Dileep, K. V., Augustine, A., & Sadasivan, C. (2012). An isoquinoline alkaloid, berberine, can inhibit fungal alpha amylase: Enzyme kinetic and molecular modeling studies. Chemical Biology & Drug Design, 80(4), 554-560. [DOI:10.1111/j.1747-0285.2012.01426.x][PMID] Vieira, S. L. (2003). Nutritional implications of mould development in feedstuffs and alternatives to reduce the mycotoxin problem in poultry feeds. World’s Poultry Science Journal, 59(1), 111-122. [DOI:10.1079/WPS20030007] Xiao, C. W., Liu, Y., Wei, Q., Ji, Q. A., Li, K., & Pan, L. J., et al. (2019). Inhibitory effects of berberine hydrochloride on Trichophyton mentagrophytes and the underlying mechanisms. Molecules, 24(4), 742. [DOI:10.3390%2Fmolecules24040742] [PMID] | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 296 تعداد دریافت فایل اصل مقاله: 524 |