
تعداد نشریات | 163 |
تعداد شمارهها | 6,825 |
تعداد مقالات | 73,610 |
تعداد مشاهده مقاله | 134,893,086 |
تعداد دریافت فایل اصل مقاله | 105,296,682 |
The Role of Fabricated Coral Shell Powder in the Healing of Mandibular Bone Gap in Dogs | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 3، دوره 18، شماره 4، دی 2024، صفحه 489-500 اصل مقاله (2.59 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.18.4.1005417 | ||
نویسندگان | ||
Ali Ghazi Atiyah1؛ Layth Mahmoud Alkattan* 2 | ||
1Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Tikrit, Tikrit, Iraq. | ||
2Department of Surgery and Theriogenology, College of Veterinary Medicine, University of Mosul, Mosul, Iraq. | ||
چکیده | ||
Background: The reconstruction of mandibular bone defects poses a real challenge and difficulty for surgeons; biomaterial bone substitutes are the most used material for reconstructing mandibular bone defects. Objectives: This study explored the role of fabricated hydroxyapatite (HAp) powder from the coral shell in healing critical size mandible gaps in dogs. Methods: HAp was prepared using the hydrothermal method from coral shells. Characterization of the fabricated coral shell was done by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and energy dispersive x-ray spectroscopy (EDX). The designed research was performed on 18 dogs of both sexes (mean weight: 20±0.5 kg, mean age: 2±0.6 years). The samples were divided into two equal groups. Animals underwent experimental defects at the ventral surface of the lower mandible about 14.5 mm. Results: The results of XRD represented high crystallinity, the EDX results indicated the surface morphology of distributed particles of calcium, phosphorous, carbon, and oxygen, respectively, and the FESEM results suggested that the surface morphology of HAp appears as a spherical particle that regularly distributed within the sample. In the HAp group, at 30 days, the FESEM images show that the defective gap completely closed, and the center of the defect was filled with a thick layer of osteoid matrix. Radiographically, the HAp group at 30 days post-surgery indicated a well-defined circular radiolucent bone gap at the caudal portion of the mandible, with a partially sclerosed margin. Macroscopically, at 30 days, the gap appears very small and is invaded by new bone formation. Conclusion: In conclusion, recycling HAp from coral shells has practical value in the reconstitution of the mandibular gap, and the radiological and critical properties of prepared HAp emphasize this outcome. | ||
کلیدواژهها | ||
Bone gap؛ Bone healing؛ Coral shell؛ Large size؛ Mandible | ||
اصل مقاله | ||
Introduction
Characterization of fabricated coral shell powder
Quantity values measured in atomic and weight (%) were listed in Table 1.
The EDX elemental mapping of fabricated coral shell HAp powder samples shown in Figure 5 was green, blue, purple and yellow, indicating the surface morphology of dispersed calcium, phosphor, carbon and oxygen particles, respectively.
FESEM of the critical size mandibular bone gap defect at 30 days post-surgery
In the control group, the defective gap appeared partially open and the center of the defective gap was filled with a homogenous, smooth matrix surrounded by multiple fibrous tissues, the predominant tissue (Figure 7A).
Discussion
Acknowledgments
Abdul Halim, N. A., Hussein, M. Z., & Kandar, M. K. (2021). Nanomaterials-upconverted hydroxyapatite for bone tissue engineering and a platform for drug delivery. International Journal of Nanomedicine, 16, 6477-6496. [DOI:10.2147/IJN.S298936] [PMID] [PMCID] Albaroudy, F. M., Alkattan, L. M., & Ismail, H. K. (2022). Histopathological and serological assessment of using rib lamb xenograft reinforced with and without hydroxyapatite nano gel for reconstruction tibial bone defect in dogs. Iraqi Journal of Veterinary Sciences, 36(Supplement1), 69-76. [DOI:10.33899/ijvs.2022.135366.2473] Alkattan, L., Alawi, A., & Al-Iraqi, O. (2020). The effect of autogenous peritoneal graft augmented with platelets- plasma rich protein on the healing of induced achilles tendon rupture, in dogs. Iranian Journal of Veterinary Medicine, 14(2), 111-119. [DOI:10.22059/IJVM.2020.291379.1005037] Anvar, S. A. A., Nowruzi, B., & Afshari, G. (2023). A review of the application of nanoparticles biosynthesized by microalgae and cyanobacteria in medical and veterinary sciences. Iranian Journal of Veterinary Medicine, 17(1), 1-18. [DOI:10.32598/IJVM.17.1.1005309] Alkattan, L., and Helal, M. (2013).Effects of ketamine-xylazine and propofol-halothane anesthetic protocols on blood gases and some anesthetic parameters in dogs. Veterinary World, 6(2), 95-99. [DOI:10.5455/vetworld.2013.95-99] Atiyah, A. G., Al-Falahi, N. H. R., & Zarraq, G. A. (2021). Synthesis and characterization of porous β-Calcium pyrophosphate bone scaffold derived from avian eggshell. Pakistan Journal of Zoology, 54(3), 1439-1442. [DOI:10.17582/journal.pjz/20200730120707] Barbeck, M., Jung, O., Smeets, R., Gosau, M., Schnettler, R., & Rider, P., et al. (2020). Implantation of an injectable bone substitute material enables integration following the principles of guided bone regeneration. In Vivo, 34(2), 557-568. [DOI:10.21873/invivo.11808] [PMID] [PMCID] Cahyaningrum, S., Herdyastuty, N., Devina, B., & Supangat, D. (2018). Synthesis and characterization of hydroxyapatite powder by wet precipitation method. Paper presented at: International Conference on Chemistry and Material Science (IC2MS) 2017, Malang, East Java, Indonesia, 4–5 November 2017.[DOI:10.1088/1757-899X/299/1/012039] Greene, S. A., & Thurmon, J. C. (1988). Xylazine-a review of its pharmacology and use in veterinary medicine. Journal of Veterinary Pharmacology and Therapeutics, 11(4), 295-313. [DOI:10.1111/j.1365-2885.1988.tb00189.x] [PMID] Huh, J. Y., Choi, B. H., Kim, B. Y., Lee, S. H., Zhu, S. J., & Jung, J. H. (2005). Critical size defect in the canine mandible. Oral surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 100(3), 296–301. [DOI:10.1016/j.tripleo.2004.12.015] [PMID] Kaneko, A., Marukawa, E., & Harada, H. (2020). Hydroxyapatite nanoparticles as injectable bone substitute material in a vertical bone augmentation model. In Vivo, 34(3), 1053-1061. [DOI:10.21873/invivo.11875] [PMID] [PMCID] Khan, S. R., Jamil, S., Rashid, H., Ali, S., Khan, S. A., & Janjua, M. R. S. A. (2019). Agar and egg shell derived calcium carbonate and calcium hydroxide nanoparticles: Synthesis, characterization and applications. Chemical Physics Letters, 732, [DOI:10.1016/j.cplett.2019.136662] Lim, H. K., Choi, Y. J., Choi, W. C., Song, I. S., & Lee, U. L. (2022). Reconstruction of maxillofacial bone defects using patient-specific long-lasting titanium implants. Scientific Reports, 12(1), 7538. [DOI:10.1038/s41598-022-11200-0] [PMID] [PMCID] Mohammed, F. M., Alkattan, L. M., Ahmed, M. S., & Thanoon, M. G. (2023). Evaluation the effect of high and low viscosity Nano-hydroxylapatite gel in repairing of an induced critical-size tibial bone defect in dogs: Radiolographical study. Journal of Applied Veterinary Sciences, 8(3), 105-110. [DOI:10.21608/javs.2023.215990.1239] Moshiri, A., Tekyieh Maroof, N., & Mohammad Sharifi, A. (2020). Role of organic and ceramic biomaterials on bone healing and regeneration: An experimental study with significant value in translational tissue engineering and regenerative medicine. Iranian Journal of Basic Medical Sciences, 23(11), 1426-1438. [PMID] Paré, A., Bossard, A., Laure, B., Weiss, P., Gauthier, O., & Corre, P. (2019). Reconstruction of segmental mandibular defects: Current procedures and perspectives. Laryngoscope Investigative Otolaryngology, 4(6), 587-596. [DOI:10.1002/lio2.325] [PMID] [PMCID] Pina, S., Rebelo, R., Correlo, V. M., Oliveira, J. M., & Reis, R. L. (2018). Bioceramics for osteochondral tissue engineering and regeneration. Advances in Experimental Medicine and Biology, 1058, 53–75.[DOI:10.1007/978-3-319-76711-6_3] [PMID] Pina, S., Vieira, S. I., Rego, P., Torres, P. M., da Cruz e Silva, O. A., & da Cruz e Silva, E. F., et al. (2010). Biological responses of brushite-forming Zn-and ZnSr-substituted beta-tricalcium phosphate bone cements. European Cells & Materials, 20, 162–177. [DOI:10.22203/eCM.v020a14] [PMID] Poinern, G. E., Brundavanam, R. K., Thi Le, X., Nicholls, P. K., Cake, M. A., & Fawcett, D. (2014). The synthesis, characterisation and in vivo study of a bioceramic for potential tissue regeneration applications. Scientific Reports, 4(1), 6235. [DOI:10.1038/srep06235] [PMID] [PMCID] Shafiei-Sarvestani, Z., Oryan, A., Bigham, A. S., & Meimandi-Parizi, A. (2012). The effect of hydroxyapatite-hPRP, and coral-hPRP on bone healing in rabbits: Radiological, biomechanical, macroscopic and histopathologic evaluation. International Journal of Surgery (London, England), 10(2), 96–101. [DOI:10.1016/j.ijsu.2011.12.010] [PMID] Roudana, M. A., Ramesha, S., Niakanb, A., Wonga, Y. H., Zavareha, M. A., & Chandranc, H, et al. (2017). Thermal phase stability and properties of hydroxyapatite derived from bio-waste eggshells. Journal of Ceramic Processing Research, 18(1), 69-72. [Link] Szcześ, A., Hołysz, L., & Chibowski, E. (2017). Synthesis of hydroxyapatite for biomedical applications. Advances in Colloid and Interface Science, 249, 321-330. [DOI:10.1016/j.cis.2017.04.007] [PMID] Tatara, A. M., Koons, G. L., Watson, E., Piepergerdes, T. C., Shah, S. R., & Smith, B. T., et al. (2019). Biomaterials-aided mandibular reconstruction using in vivo bioreactors. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6954–6963. [DOI:10.1073/pnas.1819246116] [PMID] [PMCID] Yal Beiranvand, S., Nourani, H., & Kazemi Mehrjerdi, H. (2022).Fabrication of platelet-rich fibrin-coated polycaprolactone/hydroxyapatite (PCL-HA/PRF) 3D printed scaffolds for bone tissue engineering. Iranian Journal of Veterinary Medicine, 16(4), 400-413. [DOI:10.22059/IJVM.2022.335899.1005219] Zhang, H., Zhou, Y., Yu, N., Ma, H., Wang, K., & Liu, J., et al. (2019). Construction of vascularized tissue-engineered bone with polylysine-modified coral hydroxyapatite and a double cell-sheet complex to repair a large radius bone defect in rabbits. Acta Biomaterialia, 91, 82–98. [DOI:10.1016/j.actbio.2019.04.024] [PMID] Zhou, H., & Lee, J. (2011). Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomaterialia, 7(7), 2769-2781. [DOI:10.1016/j.actbio.2011.03.019] [PMID] | ||
مراجع | ||
Abdul Halim, N. A., Hussein, M. Z., & Kandar, M. K. (2021). Nanomaterials-upconverted hydroxyapatite for bone tissue engineering and a platform for drug delivery. International Journal of Nanomedicine, 16, 6477-6496. [DOI:10.2147/IJN.S298936] [PMID] [PMCID]
Albaroudy, F. M., Alkattan, L. M., & Ismail, H. K. (2022). Histopathological and serological assessment of using rib lamb xenograft reinforced with and without hydroxyapatite nano gel for reconstruction tibial bone defect in dogs. Iraqi Journal of Veterinary Sciences, 36(Supplement1), 69-76. [DOI:10.33899/ijvs.2022.135366.2473]
Alkattan, L., Alawi, A., & Al-Iraqi, O. (2020). The effect of autogenous peritoneal graft augmented with platelets- plasma rich protein on the healing of induced achilles tendon rupture, in dogs. Iranian Journal of Veterinary Medicine, 14(2), 111-119. [DOI:10.22059/IJVM.2020.291379.1005037]
Anvar, S. A. A., Nowruzi, B., & Afshari, G. (2023). A review of the application of nanoparticles biosynthesized by microalgae and cyanobacteria in medical and veterinary sciences. Iranian Journal of Veterinary Medicine, 17(1), 1-18. [DOI:10.32598/IJVM.17.1.1005309]
Alkattan, L., and Helal, M. (2013).Effects of ketamine-xylazine and propofol-halothane anesthetic protocols on blood gases and some anesthetic parameters in dogs. Veterinary World, 6(2), 95-99. [DOI:10.5455/vetworld.2013.95-99]
Atiyah, A. G., Al-Falahi, N. H. R., & Zarraq, G. A. (2021). Synthesis and characterization of porous β-Calcium pyrophosphate bone scaffold derived from avian eggshell. Pakistan Journal of Zoology, 54(3), 1439-1442. [DOI:10.17582/journal.pjz/20200730120707]
Barbeck, M., Jung, O., Smeets, R., Gosau, M., Schnettler, R., & Rider, P., et al. (2020). Implantation of an injectable bone substitute material enables integration following the principles of guided bone regeneration. In Vivo, 34(2), 557-568. [DOI:10.21873/invivo.11808] [PMID] [PMCID]
Cahyaningrum, S., Herdyastuty, N., Devina, B., & Supangat, D. (2018). Synthesis and characterization of hydroxyapatite powder by wet precipitation method. Paper presented at: International Conference on Chemistry and Material Science (IC2MS) 2017, Malang, East Java, Indonesia, 4–5 November 2017.[DOI:10.1088/1757-899X/299/1/012039]
Greene, S. A., & Thurmon, J. C. (1988). Xylazine-a review of its pharmacology and use in veterinary medicine. Journal of Veterinary Pharmacology and Therapeutics, 11(4), 295-313. [DOI:10.1111/j.1365-2885.1988.tb00189.x] [PMID]
Huh, J. Y., Choi, B. H., Kim, B. Y., Lee, S. H., Zhu, S. J., & Jung, J. H. (2005). Critical size defect in the canine mandible. Oral surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 100(3), 296–301. [DOI:10.1016/j.tripleo.2004.12.015] [PMID]
Kaneko, A., Marukawa, E., & Harada, H. (2020). Hydroxyapatite nanoparticles as injectable bone substitute material in a vertical bone augmentation model. In Vivo, 34(3), 1053-1061. [DOI:10.21873/invivo.11875] [PMID] [PMCID]
Khan, S. R., Jamil, S., Rashid, H., Ali, S., Khan, S. A., & Janjua, M. R. S. A. (2019). Agar and egg shell derived calcium carbonate and calcium hydroxide nanoparticles: Synthesis, characterization and applications. Chemical Physics Letters, 732, [DOI:10.1016/j.cplett.2019.136662]
Lim, H. K., Choi, Y. J., Choi, W. C., Song, I. S., & Lee, U. L. (2022). Reconstruction of maxillofacial bone defects using patient-specific long-lasting titanium implants. Scientific Reports, 12(1), 7538. [DOI:10.1038/s41598-022-11200-0] [PMID] [PMCID]
Mohammed, F. M., Alkattan, L. M., Ahmed, M. S., & Thanoon, M. G. (2023). Evaluation the effect of high and low viscosity Nano-hydroxylapatite gel in repairing of an induced critical-size tibial bone defect in dogs: Radiolographical study. Journal of Applied Veterinary Sciences, 8(3), 105-110. [DOI:10.21608/javs.2023.215990.1239]
Moshiri, A., Tekyieh Maroof, N., & Mohammad Sharifi, A. (2020). Role of organic and ceramic biomaterials on bone healing and regeneration: An experimental study with significant value in translational tissue engineering and regenerative medicine. Iranian Journal of Basic Medical Sciences, 23(11), 1426-1438. [PMID]
Paré, A., Bossard, A., Laure, B., Weiss, P., Gauthier, O., & Corre, P. (2019). Reconstruction of segmental mandibular defects: Current procedures and perspectives. Laryngoscope Investigative Otolaryngology, 4(6), 587-596. [DOI:10.1002/lio2.325] [PMID] [PMCID]
Pina, S., Rebelo, R., Correlo, V. M., Oliveira, J. M., & Reis, R. L. (2018). Bioceramics for osteochondral tissue engineering and regeneration. Advances in Experimental Medicine and Biology, 1058, 53–75.[DOI:10.1007/978-3-319-76711-6_3] [PMID]
Pina, S., Vieira, S. I., Rego, P., Torres, P. M., da Cruz e Silva, O. A., & da Cruz e Silva, E. F., et al. (2010). Biological responses of brushite-forming Zn-and ZnSr-substituted beta-tricalcium phosphate bone cements. European Cells & Materials, 20, 162–177. [DOI:10.22203/eCM.v020a14] [PMID]
Poinern, G. E., Brundavanam, R. K., Thi Le, X., Nicholls, P. K., Cake, M. A., & Fawcett, D. (2014). The synthesis, characterisation and in vivo study of a bioceramic for potential tissue regeneration applications. Scientific Reports, 4(1), 6235. [DOI:10.1038/srep06235] [PMID] [PMCID]
Shafiei-Sarvestani, Z., Oryan, A., Bigham, A. S., & Meimandi-Parizi, A. (2012). The effect of hydroxyapatite-hPRP, and coral-hPRP on bone healing in rabbits: Radiological, biomechanical, macroscopic and histopathologic evaluation. International Journal of Surgery (London, England), 10(2), 96–101. [DOI:10.1016/j.ijsu.2011.12.010] [PMID]
Roudana, M. A., Ramesha, S., Niakanb, A., Wonga, Y. H., Zavareha, M. A., & Chandranc, H, et al. (2017). Thermal phase stability and properties of hydroxyapatite derived from bio-waste eggshells. Journal of Ceramic Processing Research, 18(1), 69-72. [Link]
Szcześ, A., Hołysz, L., & Chibowski, E. (2017). Synthesis of hydroxyapatite for biomedical applications. Advances in Colloid and Interface Science, 249, 321-330. [DOI:10.1016/j.cis.2017.04.007] [PMID]
Tatara, A. M., Koons, G. L., Watson, E., Piepergerdes, T. C., Shah, S. R., & Smith, B. T., et al. (2019). Biomaterials-aided mandibular reconstruction using in vivo bioreactors. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6954–6963. [DOI:10.1073/pnas.1819246116] [PMID] [PMCID]
Yal Beiranvand, S., Nourani, H., & Kazemi Mehrjerdi, H. (2022).Fabrication of platelet-rich fibrin-coated polycaprolactone/hydroxyapatite (PCL-HA/PRF) 3D printed scaffolds for bone tissue engineering. Iranian Journal of Veterinary Medicine, 16(4), 400-413. [DOI:10.22059/IJVM.2022.335899.1005219]
Zhang, H., Zhou, Y., Yu, N., Ma, H., Wang, K., & Liu, J., et al. (2019). Construction of vascularized tissue-engineered bone with polylysine-modified coral hydroxyapatite and a double cell-sheet complex to repair a large radius bone defect in rabbits. Acta Biomaterialia, 91, 82–98. [DOI:10.1016/j.actbio.2019.04.024] [PMID]
Zhou, H., & Lee, J. (2011). Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomaterialia, 7(7), 2769-2781. [DOI:10.1016/j.actbio.2011.03.019] [PMID]
| ||
آمار تعداد مشاهده مقاله: 992 تعداد دریافت فایل اصل مقاله: 461 |