تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,514 |
تعداد مشاهده مقاله | 124,130,547 |
تعداد دریافت فایل اصل مقاله | 97,236,891 |
Various Elements Levels in Four Freshwater Mussels Shells Obtained from Gölbaşı Lake, Turkey | ||
Pollution | ||
دوره 10، شماره 1، فروردین 2024، صفحه 73-89 اصل مقاله (1.62 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2023.361537.1971 | ||
نویسندگان | ||
Erkan Uğurlu* 1؛ Levent Cenk Kumruoğlu2 | ||
1Faculty of Marine Science and Technology, Iskenderun Technical University, Iskenderun, Hatay, Turkey | ||
2İskenderun Technical University, Faculty of Engineering and Natural Sciences, Dept. of Metallurgy and Materials Engineering, İskenderun, Hatay, Turkey | ||
چکیده | ||
The aim of this study was to determine by SEM-EDS analysis of the surface morphologies of the periostracum and nacreous layer and to determine the sodium (Na), Strontium (Sr), manganese (Mn), potassium (K), titanium (Ti), iron (Fe), magnesium (Mg), cobalt (Co), copper (Cu), chromium (Cr), zinc (Zn) and nickel (Ni) metals levels in the shells of the mussel (Potomida semirugata, Unio terminalis, Anodonta pseudodopsis and Leguminaia wheatleyi) obtained from Gölbaşı Lake, Turkey. The results of the study, the representative SEM analysis and corresponding EDS spectra of the periostracum and nacreous layer of the shells of freshwater mussels confirmed the presence of elemental compositions, including CaCO3. P. semirugata and U. terminalis have the aragonite prismatic layer that shows typical polygonal organizing, regular and polygonal crystal forms, with hexagonal and coexisting rhombic shapes. However, while A. pseudodopsis has round aragonite crystals (Rc), L. wheatleyi has irregular crystal plate layers (Irc). CaCO3, detected strong Ca peaks as well as C and O peaks with Mg and Si peaks. On the other hand, sodium (Na) was found in the highest concentrations ranging from 82.30±0.040 to 155.37±0.050 μg/g, and its concentrations were also higher than those of other metals in all species. The most abundant elements in shells of four freshwater mussel’s species were Sr, Na, and Mn which ranged from 26.07±0.44-58.023±0.52 μg/g, 82.30±0.040-155.37±0.050 μg/g, and 6.06±0.044-9.66±0.053 μg/g respectively. To our knowledge, this is the first study in Turkey that is researched the different four freshwater mussel species in the Gölbaşı Lake, Turkey. | ||
کلیدواژهها | ||
Freshwater mussel؛ shell structure؛ Unio؛ SEM-EDS؛ CaCO3 | ||
مراجع | ||
Ahmed, K., Ahamed, S., Rahman, S., Haque, R., & Islam, M. (2010). Heavy Metals Concentration in Water, Sediments and their Bioaccumulations in Some Freshwater Fishes and Mussel in Dhaleshwari River, Bangladesh. Asian J. Water Environ. Pollut. 7(1), 77–90.
Akoto, O., Bismark Eshun, F., Darko, G., & Adei, E. (2014). Concentrations and Health Risk Assessments of Heavy Metals in Fish from the Fosu Lagoon. Int J Environ Res 8(2), 403–410. https://doi.org/10.22059/ijer.2014.731 Allen, W. R. (1921). Studies of the Biology of Freshwater Mussels. Experimental Studies of the Food Relations of Certain Unionidae by Allen, William Ray by Allen, William Ray: Collectible; Very Good Pamphlet (1921) First edition. Signed inscribed presentation. | Robinson Street Books, IOBA. Biol Bull. Anderson, R. V. (1977). Concentration of cadmium, copper, lead, and zinc in six species of freshwater clams. Bull Environ Contam Toxicol 18(4), 492–496. https://doi.org/10.1007/BF01683722 Bailey, T. R., & Lear, C. H. (2006). Testing the effect of carbonate saturation on the Sr/Ca of biogenic aragonite: A case study from the River Ehen, Cumbria, UK. Geochem. Geophys. Geosystems 7(3). https://doi.org/10.1029/2005GC001084 Boulanger, M. T., & Glascock, M. D. (2015). Elemental variation in prehistoric Unionoida shell: Implications for ceramic provenance. J Archaeol Sci Rep 1, 2–7. Brand, U., Wassenaar, L., & Kanip, J. (1986). Variation in shell chemistry of terrestrial gastropods (Cerion incanum, Cerion uva, and Tudora maculata) from the Florida Keys and Bonaire. Can J Zool 64(11), 2399–2404. https://doi.org/10.1139/z86-358 Canli, M., Ay, Ö., & Kalay, M. (1998). Levels of Heavy Metals (Cd, Pb, Cu, Cr and Ni) in Tissue of Cyprinus carpio, Barbus capito and Chondrostoma regium from the Seyhan River, Turkey. Turkish J Zool 22(2), 149–157. Carroll, M., & Romanek, C. S. (2008). Shell layer variation in trace element concentration for the freshwater bivalve Elliptio complanata. Geo-Mar Lett 28(5), 369–381. https://doi.org/10.1007/s00367-008-0117-3 Chakraborty, S., Ray, M., & Ray, S. (2010). Toxicity of sodium arsenite in the gill of an economically important mollusc of India. Fish Shellfish Immunol 29(1), 136–148. https://doi.org/10.1016/j.fsi.2010.02.025 Chase, M. E., Jones, S. H., Hennigar, P., Sowles, J., Harding, G. C. H., Freeman, K., Wells, P. G., Krahforst, C., Coombs, K., Crawford, R., Pederson, J., & Taylor, D. (2001). Gulfwatch: Monitoring Spatial and Temporal Patterns of Trace Metal and Organic Contaminants in the Gulf of Maine (1991–1997) with the Blue Mussel, Mytilus edulis L. Mar Pollut Bull 42(6), 490–504. https://doi.org/10.1016/S0025-326X(00)00193-4 Chukaeva, M., & Petrov, D. (2022). Assessment and analysis of metal bioaccumulation in freshwater gastropods of urban river habitats, Saint Petersburg (Russia). Environ Sci Pollut Res 30(3), 7162–7172. https://doi.org/10.1007/s11356-022-21955-8 Dallinger, R., Rainbow, P. S. (1993). Ecotoxicology of metals in invertebrates. CRC Press. Dar, M. A., Belal, A. A., & Madkour, A. G. (2018). The differential abilities of some molluscs to accumulate heavy metals within their shells in the Timsah and the Great Bitter lakes, Suez Canal, Egypt. Egypt. J. Aquat. Res. 44, 291–298. https://doi.org/10.1016/j.ejar.2018.11.008 Dermott, R. M., & Lum, K. R. (1986). Metal concentrations in the annual shell layers of the bivalve Elliptio complanata. Environ Pollut B, Chem Phys 12(2), 131–143. Doğan, S., Duysak, Ö., Duysak, T., & Uğurlu, E. (2022). Türkiye Akdeniz Kıyılarında Derin Su Pembe Karidesinde (Parapenaeus longirostris, H. Lucas 1846) Oksidatif Stres Parametreleri, Metal Birikimi ve Sağlık Risk Değerlendirmesi. KSÜ Tar Doga Derg 25(4), 838–846. https://doi.org/10.18016/ksutarimdoga.vi.978862 Duysak, Ö., Mazlum, Y., & Uğurlu, E. (2021). Heavy metal and Al bioaccumulation in the anemone Actinia equina Linnaeus, 1758 (Cnidaria: Actiniidae) from İskenderun Bay, North-Eastern Mediterranean, Turkey. EgeJFAS 38(2), 161–166. https://doi.org/10.12714/egejfas.38.2.04 Duysak, Ö., & Uğurlu, E. (2020). Heavy Metal Accumulation in Different Tissues of Cuttlefish (Sepia officinalis L., 1758) in İskenderun Bay. JAES 5(4), 556–562. https://doi.org/10.35229/jaes.750466 Duysak, Ö., & Uğurlu, E. (2017). Metal accumulations in different tissues of cuttlefish (Sepia officinalis L., 1758) in the Eastern Mediterranean coasts of Turkey. Environ Sci Pollut Res 24(10), 9614–9623. https://doi.org/10.1007/s11356-017-8685-2 DWAF (1996). DWAF, South African Water Quality Guidelines. Domestic Uses. Department of Water Affairs and Forestry, Pretoria, South Africa. Egborge, A. B. M. (1991). Industrialization and heavy metal pollution in Warri river, 32nd Inaugural lecture series. University of Benin, Benin City, Nigeria. Elder, J. F., & Collins, J. J. (1991). Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems. Rev Environ Contam Toxicol 122, 37–79. https://doi.org/10.1007/978-1-4612-3198-1_2 Escánez, A., Lozano-Bilbao, E., Paz, S., Hardisson, A., González-Weller, D., Rubio, C., Lozano, G., & Gutiérrez, Á. J. (2021). Assessments of metallic contents in rare cephalopods from the Canary Islands: relationships with depth habitat and body size. Environ Sci Pollut Res 28(38), 54161–54169. https://doi.org/10.1007/s11356-021-15916-w Farris, J. L., & Van Hassel, J. H. (2006). Freshwater Bivalve Ecotoxicology | Jerry L. Farris, John H. Van Hassel, 1st ed. CRC Press, Boca Raton. Fournier, M., Pellerin, J., Clermont, Y., Morin, Y., & Brousseau, P. (2001). Effects of in vivo exposure of Mya arenaria to organic and inorganic mercury on phagocytic activity of hemocytes. Toxicol 161(3), 201–211. https://doi.org/10.1016/S0300-483X(00)00387-5 Grabarkiewicz, J., & Davis, W. (2008). An Introduction to Freshwater Mussels as Biological Indicators. Gundacker, C. (2000). Comparison of heavy metal bioaccumulation in freshwater molluscs of urban river habitats in Vienna. Environ Pollut 110(1), 61–71. https://doi.org/10.1016/s0269-7491(99)00286-9 Hameed, R. S., & Raj, A. I. M. (1990). Freshwater Mussel, Lamellidens Marginalis (Lamarck) (Mollusca: Bivalvia: Unionidae) As an Indicator of River Pollution. Chem Ecol 4(2), 57–64. Jia, Y., Wang, L., Qu, Z., & Yang, Z. (2018). Distribution, contamination and accumulation of heavy metals in water, sediments, and freshwater shellfish from Liuyang River, Southern China. Environ Sci Pollut Res 25(7), 7012–7020. https://doi.org/10.1007/s11356-017-1068-x Klishko, O., Berdnikov, N., Bogan, A., & Vinarski, M. (2022). Shells of Pearlmussels, Margaritifera dahurica (Bivalvia: Margaritiferidae), as a biogeochemical indicator of the background (Holocene) and current major and trace elements content in riverine waters of Transbaikalia (southeast Siberia). Ecol Indic 134, 108482. https://doi.org/10.1016/j.ecolind.2021.108482 Koide, M., Lee, D. S., & Goldberg, E. D. (1982). Metal and transuranic records in mussel shells, byssal threads and tissues. Estuar. Coast. Shelf Sci. 15(6), 679–695. https://doi.org/10.1016/0272-7714(82)90079-8 Kouba, A., Buric, M., & Kozak, P. (2010). Bioaccumulation and Effects of Heavy Metals in Crayfish: A Review | SpringerLink. Wat Air Soil Poll 211, 5–16. Królak, E., & Zdanowski, B. (2001). The bioaccumulation of heavy metals by the mussels Anodonta woodiana (Lea, 1834) and Dreissena polymorpha (Pall.) in the heated Konin lakes. Arch. Pol. Fish. 9(2), 229–237. Lares, M. L., & Orians, K. J. (2001). Differences in Cd elimination from Mytilus californianus and Mytilus trossulus soft tissues. Environ Pollut 112(2), 201–207. https://doi.org/10.1016/S0269-7491(00)00117-2 Lazareth, C. E., Putten, E. V., André, L., & Dehairs, F. (2003). High-resolution trace element profiles in shells of the mangrove bivalve Isognomon ephippium: a record of environmental spatio-temporal variations? Estuarine Coast Shelf Sci 57(5), 1103–1114. https://doi.org/10.1016/S0272-7714(03)00013-1 Leyssens, L., Vinck, B., Van Der Straeten, C., Wuyts, F., & Maes, L. (2017). Cobalt toxicity in humans-A review of the potential sources and systemic health effects. Toxicol 387, 43–56. https://doi.org/10.1016/j.tox.2017.05.015 Lopes-Lima, M., Gürlek, M. E., Kebapçı, Ü., Şereflişan, H., Yanık, T., Mirzajani, A., Neubert, E., Prié, V., Teixeira, A., Gomes-dos-Santos, A., Barros-García, D., Bolotov, I. N., Kondakov, A. V., Vikhrev, I. V., Tomilova, A. A., Özcan, T., Altun, A., Gonçalves, D. V., Bogan, A. E., & Froufe, E. (2021). Diversity, biogeography, evolutionary relationships, and conservation of Eastern Mediterranean freshwater mussels (Bivalvia: Unionidae). Mol Phylogenet Evol 163, 107261. https://doi.org/10.1016/j.ympev.2021.107261 Lopes-Lima, M., Rocha, A., Gonçalves, F., Andrade, J., & Machado, J. (2010). Microstructural Characterization of Inner Shell Layers in the Freshwater Bivalve Anodonta cygnea. J. Shellfish Res. 29, 969–973. https://doi.org/10.2983/035.029.0431 Machado, J., Coimbra, J., Castilho, F., & Sã, C. (1990). Effects of diflubenzuron on shell formation of the freshwater clam, Anodonta cygnea. Arch. Environ. Contam. Toxicol. 19(1), 35–39. https://doi.org/10.1007/BF01059810 Manly, R., & George, W. O. (1977). The occurrence of some heavy metals in populations of the freshwater mussel Anodonta anatina (L) from the River Thames. Environ Pollut 14(2), 139–154. Markich, S. J., Jeffree, R. A., & Burke, P. T. (2002). Freshwater Bivalve Shells as Archival Indicators of Metal Pollution from a Copper−Uranium Mine in Tropical Northern Australia. Environ. Sci. Technol. 36(5), 821–832. https://doi.org/10.1021/es011066c Moura, G., Vilarinho, L., Guedes, R., & Machado, J. (2000). The action of some heavy metals on the calcification process of Anodonta cygnea (Unionidae): nacre morphology and composition changes. Holiatis 29, 43–53. Muñoz-Barbosa, A., Gutiérrez-Galindo, E. A., & Flores-Muñoz, G. (2000). Mytilus californianus as an indicator of heavy metals on the northwest coast of Baja California, Mexico. Mar Environ Res 49(2), 123–144. https://doi.org/10.1016/s0141-1136(99)00052-5 Nystrom, J., Dunca, E., Mutvei, H., & Lindh, U. (1996). Environmental history as reflected by freshwater pearl mussels in the River Vramsan, southern Sweden. AMBIO. Oguzie, F. A. (2000). Determination of heavy metals in water and sediment of the lower Ikpoba river, Benin City, Nigeria. Journal of Applied Sciences and Environmental Management 4(2), 55–60. Okoshi, K., & Sato-Okoshi, W. (1996). Biomineralization in molluscan aquaculture Growth and disease. Bull. Inst. océanogr 151–169. Poulain, C., Gillikin, D. P., Thébault, J., Munaron, J. M., Bohn, M., Robert, R., Paulet, Y. M., & Lorrain, A. (2015). An evaluation of Mg/Ca, Sr/Ca, and Ba/Ca ratios as environmental proxies in aragonite bivalve shells. Chem Geol 396, 42–50. https://doi.org/10.1016/j.chemgeo.2014.12.019 Ravera, O., Beone, G. M., Trincherini, P., & Riccardi, N. (2007). Seasonal variations in metal content of two Unio pictorum mancus (Mollusca, Unionidae) populations from two lakes of different trophic state. J Limnol 66, 28–39. https://doi.org/10.4081/jlimnol.2007.28 Ravera, O., Cenci, R., Beone, G. M., Dantas, M., & Lodigiani, P. (2003). Trace element concentrations in freshwater mussels and macrophytes as related to those in their environment. J Limnol 62(1), 61–70. https://doi.org/10.4081/jlimnol.2003.61 Rosenthal, Y., & Katz, A. (1989). The applicability of trace elements in freshwater shells for paleogeochemical studies. Chem Geo 78(1), 65–76. https://doi.org/10.1016/0009-2541(89)90052-1 Schöne, B. R., Zhang, Z., Radermacher, P., Thébault, J., Jacob, D. E., Nunn, E. V., & Maurer, A.-F. (2011). Sr/Ca and Mg/Ca ratios of ontogenetically old, long-lived bivalve shells (Arctica islandica) and their function as paleotemperature proxies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302(1), 52–64. https://doi.org/10.1016/j.palaeo.2010.03.016 Segar, D. A., Collins, J. D., & Riley, J. P. (1971). The Distribution of the Major and Some Minor Elements in Marine Animals Part II. Molluscs. J. Mar. Biol. Assoc 51(1), 131–136. Şereflişan, H. (2003). Gölbaşı Gölü (Hatay)’nde bulunan Unio terminalis delicatus’un üreme biyolojisi ve yetiştiricilik potansiyelinin araştırılması (Doktora Tezi). Hatay Mustafa Kemal Üniversitesi, Hatay. Şereflişan, H. (2001). Tatlısu salyangozlarının (Anisus icucostamus) yaz mevsimi içinde farklı materyaller üzerindeki yaşama oranı. Presented at the XI. Ulusal Su Ürünleri Sempozyumu, Hatay. Şereflişan, H., Çek, Ş., & Şereflişan, M. (2013). The reproductive cycle of Potomida littoralis (Cuvier, 1798)(Bivalvia: Unionidae) in Lake Gölbaşi, Turkey. Pak J Zool 45(5), 1311-1319. Sultana, S., Siddiki, A. K. M. N. A., Rokonujjaman, Md., Naser, M. N., Salam, A., & Salam*, Md. A. (2016). Heavy metals accumulation in freshwater mussels (Lamellidens marginalis) as a biological monitor inhabiting in Dhanmondi Lake, Dhaka, Bangladesh. Int J Bioass 5(10), 4933. https://doi.org/10.21746/ijbio.2016.10.003 Verdegaal, S. (2002). The shell chemistry of Unio crassus batavus as tool for reconstructing the evolution of the Rhine–Meuse delta and its use as indicator for river water composition. Amsterdam. Vetrov, V. A., & Kuznetsova, A. I. (1997). Microelements in natural environment of the Baikal Lake region. Novosibirsk. Watters, G. (1992). Unionids, Fishes, and the Species-Area Curve. J Biogeogr 19(5), 481–490. https://doi.org/10.2307/2845767 | ||
آمار تعداد مشاهده مقاله: 305 تعداد دریافت فایل اصل مقاله: 492 |