تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,032 |
تعداد مشاهده مقاله | 125,502,194 |
تعداد دریافت فایل اصل مقاله | 98,766,175 |
بررسی اثر حفاظت فراسرد بر شاخصهای رشد و ترکیب بیوشیمیایی ریزجلبک Chaetoceros calcitrans | ||
شیلات | ||
دوره 76، شماره 3، مهر 1402، صفحه 437-453 اصل مقاله (1.22 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jfisheries.2023.358465.1383 | ||
نویسندگان | ||
مرتضی بهره مند1؛ محمدعلی نعمت اللهی* 2؛ سجاد پورمظفر3 | ||
1دانشجوی دکتری گروه شیلات، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
2استادگروه شیلات، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
3استادیار پژوهشی ایستگاه تحقیقات نرمتنان خلیج فارس، پژوهشکده اکولوژی خلیج فارس و دریای عمان، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، بندرلنگه، ایران | ||
چکیده | ||
در این مطالعه بهمنظور ارزیابی امکان نگهداری ریزجلبک کتوسروس Chaetoceros calcitrans در شرایط فراسرد، 4 عامل محافظت کنندة سرمایی دی متیل سولفوکساید (DMSO)، متانول (ME)، گلیسرول (GL) و اتیلن گلیکول (ET)، هر یک با غلظتهای مختلف (2/5، 5، 10، 15، 20، 25 درصد (حجم/حجم)، بهعنوان تیمارهای آزمایشی در نظر گرفته شد و نمونههای ریزجلبکی پس از آمادهسازی بهمدت 30 روز در دمای 196- درجة سانتیگراد قرار داده شد. در ادامه، بهمنظور تعیین بهترین تیمارها کشت مجدد ریزجلبک انجام و عملکرد رشد، ترکیب بیوشیمیایی و پروفیل اسید چرب مورد سنجش قرار گرفت. از 24 تیمار مورد آزمایش، در 15 تیمار پس از خروج از حالت انجماد رشد مجدد سلولها مشاهده شد. بیشترین میزان تراکم نهایی (106×4/13 سلول در میلیلیتر) در بین تیمارهای آزمایشی در تیمار DMSO15 مشاهده شد. شاخص بقا در تیمارهایی که پس از انجمادزدایی رشد مجدد سلولها در آنها مشاهده شد در دامنهای بین 8/26 تا 28/19 درصد قرار داشت. بیشترین میزان زندهمانی بهترتیب در تیمارهای DMSO15، DMSO10 و ME15 ثبت شد. سنجش ترکیب بیوشیمیایی نشان داد که تنها در شاخص چربی اندازهگیری شده در تیمارهای آزمایشی نسبت به گروه شاهد افزایش معنیدار مشاهده شد (0/05>P). سنجش پروفیل اسیدهای چرب نیز هیچ گونه اختلاف معنیداری بین تیمارها نشان نداد. نتایج حاصل از پژوهش حاضر نشان داد که حفاظت فراسرد ریزجلبک کتوسروس در شرایطی میتواند موفقیتآمیز باشد که از DMSO در سطح 5 تا 15 درصد و یا ME در سطح 10 تا 15 درصد بهعنوان عامل محافظتکنندة سرمایی استفاده شود، و مناسبترین نتایج نیز در زمان استفاده از DMSO در سطح 15 درصد بهدست آمد. | ||
کلیدواژهها | ||
حفاظت فراسرد؛ Chaetoceros calcitrans؛ پروفیل اسید چرب؛ DMSO؛ دیاتومه | ||
عنوان مقاله [English] | ||
Cryopreservation of the microalgae Chaetoceros calcitrans and its effects on growth and biochemical composition | ||
نویسندگان [English] | ||
Morteza Bahremand1؛ Mohammad Ali Nematollahi2؛ Sajjad Pourmozaffar3 | ||
1Ph.D. Student, Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran | ||
2Professor, Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran | ||
3Assistant Professor, Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar-e-Lengeh, Iran | ||
چکیده [English] | ||
In this study, in order to evaluate the possibility of cryopreservation of C. calcitrans, 4 cryoprotectant agents (dimethyl sulfoxide, methanol, glycerol and ethylene glycol), each with different concentrations (2.5, 5, 10, 15, 20, 25% (v/v)), were taken as experimental treatments. Then, microalgae samples were placed at -196°C for 30 days. After that, in order to determine the best treatments, re-cultivation of microalgae was carried out and growth performance, biochemical composition and fatty acid profile were measured. After thawing, regrowth of microalgae cells was observed in 15 out of 24 treatments. The highest final cell density (4.13x106 cells/ml) was observed in DMSO15. After thawing, in the treatments in which the cells were reproduced again, the viability ranged between 8.26 and 28.19 percent. Maximum viability index were recorded in DMSO15, DMSO10 and ME15, respectively. Biochemical composition analysis showed that there was a significant increase on the lipid content in the experimental treatments compared to the control group (p<0.05). No significant difference was observed on the fatty acid profile(p>0.05). The results showed that the cryopreservation of C. calcitrans can be successful only if we use DMSO (5-15%) or ME (10-15%) as a cryoprotectant, and the best results are obtained when using DMSO at the level of 15%. | ||
کلیدواژهها [English] | ||
Cryopreservation, Chaetoceros calcitrans, fatty acid profile, DMSO, Diatom | ||
مراجع | ||
Abreu, L., Borges, L., Marangoni, J., Abreu, P.C., 2012. Cryopreservation of some useful microalgae species for biotechnological exploitation. Journal of Applied Phycology 24, 1579-1588. DOI: 10.1007/s10811-012-9818-0 Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2), 248-254. DOI: 10.1006/abio.1976.9999 Brown, M., Jeffrey, S., Volkman, J., Dunstan, G., 1997. Nutritional properties of microalgae for mariculture. Aquaculture 151, 315-331. DOI: 10.1016/S0044-8486(96)01501-3 Cañavate, J.P., Lubian, L.M., 1994. Tolerance of six marine microalgae to the cryoprotectants dimethyl sulfoxide and methanol. Journal of Phycology 30, 559-565. DOI: 10.1016/0044-8486(95)01056-4 Cañavate, J.P., Lubian, L.M., 1995a. Relationship between cooling rates, cryoprotectant concentrations and salinities in the cryopreservation of marine microalgae. Marine Biology 124, 325-334. DOI: 10.1007/BF00347136 Cañavate, J.P., Lubian, L.M., 1995b. Some aspects on the cryopreservation of microalgae used as food for marine species. Aquaculture 136, 277-290. DOI: 10.1016/0044-8486(95)01056-4 Cañavate, J.P., Lubian, L.M., 1997a. Effects of slow and rapid warming on the cryopreservation of marine microalgae. Cryobiology 35, 143-149. DOI: 10.1006/cryo.1997.2031 Cañavate, J.P., Lubian, L.M., 1997b. Effects of culture age on cryopreservation of marine microalgae. European Journal of Phycology 32(1), 87-90, DOI: 10.1080/09541449710001719405. Chellappan, A., Thangamani, P., Markose, S., Thavasimuthu, C., Thangaswamy, S., Mariavincent, M., 2020. Long-term preservation of micro-algal stock for fish hatcheries. Aquaculture Reports 17(100329), 1-6. DOI: 10.1016/j.aqrep.2020.100329 Cordero, B., Voltolina, D., 1997. Viability of mass algal cultures preserved by freezing and freeze-drying. Aquaculture Engineering 16, 205-211. DOI: 10.1016/S0144-8609(97)00001-0 da Silva, H.R., da Silva, F.C.P., Prete, C.E.C., 2020. Cryopreservation of Chlorella vulgaris using different cryoprotectant agents. Journal of Agricultural Science 12(7), 75-81. DOI: 10.5539/jas.v12n7p75 Day, J., Harding, K., 2007. Cryopreservation of algae. In: B.M. Reed (ed.). Plant cryopreservation: a practical guide. Springer, New York, pp. 95-116. DOI: 10.1007/978-0-387-72276-4 Day, J.G., 2007. Cryopreservation of microalgae and cyanobacteria. In: Cryopreservation and freeze-drying protocols, 141-151. DOI: 10.1007/978-1-59745-362-2_10 Demirel, Z., Demirkaya, C., Imamoglu, E., Conk Dalay, M. 2016. Diatom cultivation and lipid productivity for non-cryopreserved and cryopreserved cells. Agronomy Research 14(4), 1266-1273. Dubois, M., Gilles, K.A., Hamilto, J.K., Rebers P.A., Smith, F., 1956. Colorimetric method for determination of sugars and related substrates. Analytical Chemistry 28, 350-356. DOI: 10.1021/ac60111a017 Esquivel, B., Lobina, D., Sandoval, F. 1993. The biochemical composition of two diatoms after different preservation techniques. Comparative Biochemistry & Physiology 105B(2), 369-373. DOI: 10.1016/0305-0491(93)90243- Fayazi Atdotan, E., Rajabi Islami, H., 2015. Comparison of some freshwater green algae conservation using the of freeze-drying and cryopreservation methods. Iranian Scientific Fisheries Journal 24(2), 103-114. (in Persian). DOI: 10.22092/ISFJ.2015.103143 Fenwick, C., Day, J.G., 1992. Cryopreservation of Tetraselmis suecica cultured under different nutrients regimes. Journal of Applied Phycology, 4: 105-109. DOI: 10.1007/BF02442458 Fogg, G.E., Tun, T., 1960. Interrelations of photosynthesis and assimilation of elementary nitrogen in blue-green algae. Proceeding of Royal Society London, Ser. B., 153, 111-127. DOI: 10.1098/rspb.1960.0090 Foo, S.C., Mok, C.Y., Ho, S.Y., Khong, N.M.H., 2023. Microalgal culture preservation: Progress, trends and future developments. Algal Researc, 71(103007), 1-16. DOI: 10.1016/j.algal.2023.103007 Franks, F., 1985. Biophysics and biochemistry at low temperatures. Cambridge University Press, New York, p 210. Fuller, B. 2004. Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo-Letters 2, 375-388. Guermazi, W., Sellami-Kammoun, A., Elloumi, J., Drira, Z., Aleya, L., Marangoni, R., Ayadi, H., Maalej, S., 2010. Microalgal cryo-preservation using dimethyl sulfoxide (Me2SO) coupled with two freezing protocols: Influence on the fatty acid profile. Journal of Thermal Biology 35(4), 175-181. DOI: 10.1016/j.jtherbio.2010.03.001 Guillard, R., Rhyther, J., 1962. Studies on marine planktonic diatoms. Cyclotella nana Hustedt and Detonula confervacea (Cleve). Canadian Journal of Microbiology 8, 229-239. DOI: 10.1139/m62-029 Gwo J.C., Chiu J.Y., Chou C.C., Cheng H.Y., 2005. Cryopreservation of a marine microalga, Nannochloropsis oculata (Eustigmatophyceae). Cryobiology 50, 338-343. DOI: 10.1016/j.cryobiol.2005.02.001 Heesch, S., Day, J.G., Yamagishi, T., Kawai, H., Muller, D.G., Kupper, F.C., 2012. Cryopreservation of the model alga Ectocarpus (Phaeophyceae). Cryo Letters 33, 327-336. Holm-Hansen, O. 1963. Viability of blue-green and green algae after freezing. Physiologia Plantarum 16, 530-540. DOI:10.1111/j.1399-3054.1963.tb08330.x Houdan, A., Véron, B., Claquin, P., Lefebvre, S., Poncet, J., 2005. Cryopreservation of the coccolithophore, Emiliania huxleyi (Haptophyta, Prymnesiophyceae). Journal of Applied Phycology 17, 413- 422. DOI: 10.1007/s10811-005-0065-5 Iwamoto, K., Fukuyo, S., Okuda, M., Kobayashi, M., Shiraiwa, Y., 2012. Cryopreservation of the chlorophyll d-containing cyanobacterium Acaryochloris marina. Procedia Environmental Sciences 15, 118-125. DOI: 10.1016/j.proenv.2012.05.016 Kapoore, R.V., Huete-Ortega, M., Day, J.G., Okurowska, K., Slocombe, S.P., Stanley, M.S., Vaidyanathan, S., 2019. Effects of cryopreservation on viability and functional stability of an industrially relevant alga. Scientific Reports 9(2093), 1-12. DO: 10.1038/s41598-019-38588-6 Kihika, J.K., Wood, S.A., Rhodes, L., Smith, K.F., Miller, M.R., Pochon, X., Thompson, L., Butler, J., Schattschneider, J., Oakley, C., Ryan, K.G., 2022. Cryopreservation of six Symbiodiniaceae genera and assessment of fatty acid profiles in response to increased salinity treatments. Scientific Reports 20(12408), 1-15. DOI: 10.1038/s41598-022-16735-w Krichnavarruk, S., Loataweesup, W., Powtongsook, S., Pavasant, P., 2005. Optimal growth conditions and the cultivation of Chaetoceros calcitrans in airlift photobioreactors. Chemical Engineering Journal, 105: 91-98. DOI:10.1016/j.cej.2004.10.002 Leynaert, A., Fardel, C., Beker, B., Soler, C., Delebecq, G., Lemercier, A., Pondaven, P., Duran, P.E., Heggarty, K., 2018. Diatom frustules nanostructure in pelagic and benthic environments. Silicon 10(6), 2701-2709. DOI: 10.1007/s12633-018-9809-0 McGrath, M.S., Daggett, P.M., Dilworth., S. 1978. Freeze-drying of algae: chlorophyta and chrysophyta. Journal of Phycology, 14(4): 521-525. DOI:10.1111/j.1529-8817.1978.tb02480.x Mehrabi, F., Jafarpour, S.A., Nematzadeh, G-A., 2018. Comparison of different cell-wall disruption and fatty acid extraction from Dunaliella Salina microalgae. Research and Innovation in Food Science and Technology 7(2), 167-176. (in Persian). DOI: 10.22101/JRIFST.2018.07.17.724 Mock, T., Thomas, D., 2005. Recent advances in sea ice microbiology. Environmental Microbiology 7, 605-619. DOI: 10.1111/j.1462-2920.2005.00781.x Molina Grima, E., Sanchez Perez, J.A., Garcia Camacho, F., Acien Fernandez, F.G., Lopez Alonso, D., Segura del Castillo, C.I. 1994. Preservation of the marine microalga, Isochrysis galbana: influence on the fatty acid profile. Aquaculture. 123, 377-385. DOI: 10.1016/0044-8486(94)90072-8 Morgan-Kiss, R.M., Priscu, J.C., Pocock, T., Gudynaite-Savitch, L., Huner, N.P.A., 2006. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiology and Molecular Biology Reviews 70, 222-252. DOI: 10.1128/MMBR.70.1.222-252.2006 Nakanishi, K., Deuchi, K., Kuwano, K., 2012. Cryopreservation of four valuable strains of microalgae, including viability and characteristics during 15 years of cryostorage. Journal of Applied Phycology 24, 1381–1385. DOI:10.1007/s10811-012-9790-8 Nugroho, W.S.K., Kim, D-A., Kim, D-W., Koo, B-W., Hur, Y.B., Kim, H.J., 2016. Current advances in cryopreservation of microalgae. Journal of Marine Life Science 1(1), 70-78. Núñez-Zarco, E., Sánchez-Saavedra, M., 2011. Cold Storage of Six Marine Benthic Diatoms Native to the Mexico Pacific Coast. Journal of World Aquaculture Society 42(4), DOI:10.1111/j.1749-7345.2011.00495.x Paredes, E., Ward, A., Probert, I., Gouhier, L., Campbell, C.N., 2021. Cryopreservation of algae. In: Wolkers, W.F., Oldenhof, H. (eds). Cryopreservation and freeze-drying protocols. Methods in Molecular Biology, vol 2180. Humana, New York, NY. Phatarpekar, P., Sreepada, R., Pednekar, C., Achuthankutty, C. 2000. A comparative study on growth performance and biochemical composition of mixed culture of Isochrysis galbana and Chaetoceros calcitrans with monocultures. Aquaculture, 181: 141-155. DOI: 10.1016/S0044-8486(99)00227-6 Prieto-Guevara, M., Alarcón-Furnieles, J., Jiménez-Velásquez, C., Hernández-Julio, Y., Espinosa-Araujo, J., Atencio-García, V. 2023. Cryopreservation of the Microalgae Scenedesmus sp. Cells, 12 (562): 1-14. DOI: 10.3390/cells12040562 Rhodes, L., Smith, J., Tervit, R., Roberts, R., Adamson, J., Adams, S., Decaer, M., 2006. Cryopreservation of economically valuable marine micro-algae in the classes Bacillariophyceae, Chlorophyceae, Cyanophyceae, Dinophyceae, Haptophyceae, Prasinophyceae, and Rhodophyceae. Cryobiology 52, 152-156. DOI: 10.1016/j.cryobiol.2005.10.003 Rodríguez, E.O., López-Elías, J.A., Aguirre-Hinojosa, E., Garza-Aguirre, M.D.C., Constantino-Franco, F., Miranda-Baeza, A., Nieves-Soto, M., 2012. Evaluation of the nutritional quality of Chaetoceros muelleri schütt (Chaetocerotales: Chaetocerotaceae) and Isochrysis sp. (Isochrysidales: Isochrysidaceae) grown outdoors for the larval development of Litopenaeus vannamei (Boone, 1931) (Decapoda: Penaeidae). Archives of Biological Sciences 64(3), 963-970. DOI: 10.2298/ABS1203963R Salas-Leiva, J., Dupré, E., Salas-Leiva, D., 2016. Proximate composition analysis posterior to the cryopreservation of Chaetoceros calcitrans. Revista MVZ Córdoba 21(1), 5258-5264. DOI: 10.21897/rmvz.35 Salas-Leiva, J.S., Dupré, E., 2011. Cryopreservation of the microalgae Chaetoceros calcitrans (Paulsen): analysis of the effect of DMSO temperature and light regime during different equilibrium periods. Latin American Journal of Aquatic Research 39(2), 271-279. DOI: 10.3856/vol39-issue2-fulltext-8 Sánchez-Saavedra, M., Núñez-Zarco, E., 2012. Photosynthetic and biochemical effects of cold storage on marine benthic diatoms of the Mexican Pacific coast. Journal of World Aquaculture Society 43(2), 249-258. DOI: 10.1111/j.1749-7345.2012.00553.x Santarius, K., 1996. Freezing of isolated thylakoid membrane in complex media. X. Interactions among various low molecular weight cryoprotectants. Cryobiology 33, 118-126. DOI: 10.1007/BF00030062 Scarbrough, C., Wirschell, M., 2016. Comparative analysis of cryopreservation methods in Chlamydomonas reinhardtii. Cryobiology, 73(2), 291-295. DOI: 10.1016/j.cryobiol.2016.07.011 Soxhlet, F. 1879. Die gewichtsanalytische Bestimmung des Milchfettes. Dinglers Polytechnisches Journal 232, 461-465. Tapia-Gallardo, Y.D., Río-Portilla, M.A., Molina-Cárdenas, C.A., Sánchez-Saavedra, M.P., 2021. Antibacterial activity in three Chaetoceros microalgae species cultures by using antibiotics. Revista de Biología Marina y Oceanografía 56(2), 111-121, 2021 DOI: 10.22370/rbmo.2021.56.2.3055 Taylor, R., Fletcher, R.L., 1999. Cryopreservation of eukaryotic algae -a review of methodologies. Journal of Applied Phycology 10, 481-501. DOI: 10.1023/A:1008094622412 Tessarolli, L.P., Day, J.G., Vieira, A.A.H., 2017. Establishment of a cryopreserved biobank for the Culture Collection of Freshwater Microalgae (CCMA-UFSCar), São Paulo, Brazil. Biota Neotropica 17(2), 1-9. DOI: 10.1590/1676-0611-BN-2016-0299 Tzovenis, I., Triantaphyllidis, G., Naihong, X., Chatzinikolaou, E., Papadopoulou, K., Xouri, G., Tafas, T. 2004. Cryopreservation of marine microalgae and potential toxicity of cryoprotectants to the primary steps of the aquacultural food chain. Aquaculture 230, 457-473. DOI: 10.1016/S0044-8486(03)00444-7 Wolkers, W.F., Oldenhof, H., 2021. Principles underlying cryopreservation and freeze-drying of cells and tissues. In: Wolkers, W.F., Oldenhof, H. (eds). Cryopreservation and freeze-drying protocols. Methods in molecular biology, vol 2180. Humana, New York, NY. DOI: 10.1007/978-1-0716-0783-1_1. Yang, D., Li, W., 2016. Methanol-promoted lipid remodelling during cooling sustains cryopreservation survival of Chlamydomonas reinhardtii. PLOS One 11(1), e0146255. DOI: 10.1371/journal.pone.0146255 Youn, J.Y., Hur, S.B., 2009. Cryopreserved marine microalgae grown using different freezing methods. Algae 24(4): 257-265. DOI: 10.4490/ALGAE.2009.24.4.257 Zar, J.H. 2010. Biostatistical analysis. 5th edition. Pearson, New Jersey, USA. 960 p. | ||
آمار تعداد مشاهده مقاله: 176 تعداد دریافت فایل اصل مقاله: 217 |