تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,514 |
تعداد مشاهده مقاله | 124,130,441 |
تعداد دریافت فایل اصل مقاله | 97,236,835 |
Analysis of CO2 Mitigation Strategies for Iran’s Thermal Power Plants Using Modified STIRPAT Model | ||
Pollution | ||
دوره 10، شماره 1، فروردین 2024، صفحه 265-282 اصل مقاله (1.63 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2023.365578.2078 | ||
نویسندگان | ||
Shadi Maleki1؛ Saeed Nazari Kudahi* 2 | ||
1Aras International Campus, University of Tehran, P.O.Box 14155-6619, Aras, Iran | ||
2Environment Research Department, Energy and Environment Research Center, Niroo Research Institute, P.O.Box 14665-517, Tehran, Iran | ||
چکیده | ||
Thermal power plants are one of the main sources of CO2 emissions in the world. On the other hand, increasing carbon dioxide emissions as a greenhouse gas is led to global warming and climate change. In this study, CO2 mitigation strategies for Iran’s thermal power plants regarding Intended Nationally Determined Contributions submitted by Iran using modified STIRPAT model examines are presented. In the first step of this research, CO2 emissions from Iran’s power sector are predicted with respect to the parameters including, population, GDP, and electricity generation. In the second step of this research, CO2 mitigation strategies including, using the renewable sources and increasing energy saving as well as power generation efficiency during the years of 2020 to 2025 are analyzed using modified STIRPAT model to reduce carbon dioxide emissions in accordance with Iran’s INDCs. The prediction of carbon dioxide emissions by 2025 represents an increase of 26.5% in carbon dioxide emissions compared to 2017 while estimating carbon dioxide emissions in accordance with Iran’s INDCs allows a maximum increase of 21.4% compared to 2017. In order to reduce carbon dioxide emissions, the average efficiency of power plants by 2025 should be 1.542% higher than in 2017, or 3.086% of the energy savings should be implemented compared to total electricity generation output projected in 2025, or more than 36.22% increment of electricity generation output from renewable energy is expected compared to the projected level in 2025, or a combination of these three solutions. | ||
کلیدواژهها | ||
CO2 emissions؛ Thermal power plants؛ STIRPAT model؛ Iran’ s INDCs | ||
مراجع | ||
Amiri, M. J., & Eslamian, S. S. (2010). Investigation of climate change in Iran. J. Environ. Sci. Technol., 3(4), 208-216. Avami, A., & Farahmandpour, B. (2008). Analysis of environmental emissions and greenhouse gases in Islamic Republic of Iran. WSEAS Trans. Environ. Dev., 4(4), 303-312. Bargaoui, S. A., Liouane, N., & Nouri, F. Z. (2014). Environmental impact determinants: An empirical analysis based on the STIRPAT model. Procedia Soc. Behav. Sci., 109, 449-458. Bagheri, S. (2022). Analysing the CO2 Emission Function in Iran. Environment and Interdisciplinary Development, 7(76), 61-73. de Mattos, E. J., & Filippi, E. E. (2014). Drivers of environmental impact: A proposal for nonlinear scenario designing. Environ. Model. Softw. , 62, 22-32. Guan, Y., Kang, L., Shao, C., Wang, P., & Ju, M. (2017). Measuring county-level heterogeneity of CO2 emissions attributed to energy consumption: A case study in Ningxia Hui Autonomous Region, China. J. Clean. Prod., 142, 3471-3481. Lotfalipour, M. R., Falahi, M. A., & Ashena, M. (2010). Economic growth, CO2 emissions, and fossil fuels consumption in Iran. Energy, 35(12), 5115-5120. Liddle, B. (2015). What are the carbon emissions elasticities for income and population? Bridging STIRPAT and EKC via robust heterogeneous panel estimates. Glob. Environ. Change. , 31, 62-73. Lin, B., Omoju, O. E., Nwakeze, N. M., Okonkwo, J. U., & Megbowon, E. T. (2016). Is the environmental Kuznets curve hypothesis a sound basis for environmental policy in Africa? J. Clean. Prod., 133, 712-724. Lv, Z. (2017). The effect of democracy on CO2 emissions in emerging countries: does the level of income matter? Renew. Sustain. Energy Rev., 72, 900-906. Mousavi, B., Lopez, N. S. A., Biona, J. B. M., Chiu, A. S., & Blesl, M. (2017). Driving forces of Iran’s CO2 emissions from energy consumption: an LMDI decomposition approach. Appl. Energy, 206, 804-814. Shafiei, S., & Salim, R. A. (2014). Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: a comparative analysis. Energy Policy, 66, 547-556. Shi, A. (2003). The impact of population pressure on global carbon dioxide emissions, 1975–1996: evidence from pooled cross-country data. Ecol. Econ., 44(1), 29-42. Shuai, C., Shen, L., Jiao, L., Wu, Y., & Tan, Y. (2017). Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011. Appl. Energy, 187, 310-325. Tan, X., Dong, L., Chen, D., Gu, B., & Zeng, Y. (2016). China’s regional CO2 emissions reduction potential: A study of Chongqing city. Appl. Energy, 162, 1345-1354. Wang, C., Wang, F., Zhang, X., Yang, Y., Su, Y., Ye, Y., & Zhang, H. (2017). Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang. Renew. Sustain. Energy Rev., 67, 51-61. Wang, P., Wu, W., Zhu, B., & Wei, Y. (2013). Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China. Appl. Energy, 106, 65-71. Wang, S., Fang, C., & Wang, Y. (2016). Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors: An empirical analysis based on provincial panel data. Renew. Sustain. Energy Rev., 55, 505-515. Wang, Y., & Zhao, T. (2015). Impacts of energy-related CO2 emissions: evidence from under developed, developing and highly developed regions in China. Ecol. Indic., 50, 186-195. Xu, R., & Lin, B. (2017). Why are there large regional differences in CO2 emissions? Evidence from China’s manufacturing industry. J. Clean. Prod. , 140, 1330-1343. Yang, Y., Zhao, T., Wang, Y., & Shi, Z. (2015). Research on impacts of population-related factors on carbon emissions in Beijing from 1984 to 2012. Environ. Impact Assess. Rev., 55, 45-53. York, R., Rosa, E. A., & Dietz, T. (2003). Footprints on the earth: The environmental consequences of modernity. Am. Sociol. Rev., 279-300. York, R., Rosa, E. A., & Dietz, T. (2003). STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. , 46(3), 351-365. Zhang, C., & Tan, Z. (2016). The relationships between population factors and China’s carbon emissions: Does population aging matter? Renew. Sustain. Energy Rev., 65, 1018-1025. Zhang, C., & Zhou, X. (2016). Does foreign direct investment lead to lower CO2 emissions? Evidence from a regional analysis in China. Renew. Sustain. Energy Rev., 58, 943-951. Zhou, Y., Liu, Y., Wu, W., & Li, Y. (2015). Effects of rural–urban development transformation on energy consumption and CO2 emissions: A regional analysis in China. Renew. Sustain. Energy Rev., 52, 863-875. Zhou, Y., & Liu, Y. (2016). Does population have a larger impact on carbon dioxide emissions than income? Evidence from a cross-regional panel analysis in China. Appl. Energy, 180, 800-809. Zoundi, Z. (2017). CO2 emissions, renewable energy and the Environmental Kuznets Curve, a panel cointegration approach. Renew. Sustain. Energy Rev., 72, 1067-1075. Solaymani, S. (2020). A CO2 emissions assessment of the green economy in Iran. Greenh. Gases: Sci., 10(2), 390-407. Wang, Y., Zhang, X., Kubota, J., Zhu, X., & Lu, G. (2015). A semi-parametric panel data analysis on the urbanization-carbon emissions nexus for OECD countries. Renew. Sustain. Energy Rev., 48, 704-709. | ||
آمار تعداد مشاهده مقاله: 239 تعداد دریافت فایل اصل مقاله: 379 |