تعداد نشریات | 161 |
تعداد شمارهها | 6,479 |
تعداد مقالات | 70,031 |
تعداد مشاهده مقاله | 122,981,767 |
تعداد دریافت فایل اصل مقاله | 96,214,074 |
First Report of Enterobacter hormaechei Isolated from Agricultural Soil in the Biodegradation of Glyphosate | ||
Pollution | ||
دوره 10، شماره 1، فروردین 2024، صفحه 283-298 اصل مقاله (1.08 M) | ||
نوع مقاله: Research Note | ||
شناسه دیجیتال (DOI): 10.22059/poll.2023.359466.1915 | ||
نویسندگان | ||
Hadjer Badani* 1؛ Fatma Zohra Haddad2؛ AbdElKader ElOuissi3 | ||
1Geo-environment and Spatial Development Laboratory,Department of Biology, Faculty of Nature and Life Sciences, University of Mustapha Stambouli, Mascara, Algeria | ||
2Department of Biology, University of Oran, Oran, Algeria | ||
3Department of Agronomic Sciences, University Mustapha Stambouli of Mascara, Mascara, Algeria | ||
چکیده | ||
Several studies have explored the utilization of soil microorganisms, to address the environmental issues associated with glyphosate use and enhance crop yields. In our investigation, screening on Agar plate and broth medium Luria Bertani was carried out after isolating bacterial strains from rhizospheric agricultural soil in Mascara, Algeria, to biodegrade glyphosate, following that by testing the Plant Growth-Promoting Rhizobacteria and evaluate the effects of glyphosate on these proprieties. Our findings indicate that five bacterial strains exhibited growth in the presence of glyphosate concentrations up to 25 mg/ml, beyond this concentration the strains have developed tolerance. Following a partial examination of the 16S rRNA sequences, the bacterial strains were identified as belonging to the genus of Enterobacter. After 10 days of incubation with the glyphosate, Phosphate solubilization decreased in broth and agar Pikovskaya medium and the bacterial strains synthetized less of indole-3-acetic acid compared to the control, indicating the impact of glyphosate on these outcomes, high concentration of glyphosate inhibited nitrogen fixation, and various doses of glyphosate were found to restrict the growth of biofilms in these strains. The results of HPLC examination of secondary metabolites revealed that the primary degradation products of glyphosate in all strains were Sarcosine and Glycine. So, it seemed that the strain could both biodegrade glyphosate and use it for growth ,while also possessing rhizobacteria properties that promote plant development, enabling the use of the strains in the bioremediation of glyphosate-contaminated soils. | ||
کلیدواژهها | ||
Biofilm؛ Enterobacter؛ Glyphosate؛ Biodegradation؛ Pollution | ||
مراجع | ||
Ahemad , M., & Khan, M.S. (2012). Evaluation of plant-growth-promoting activities of rhizobacterium Pseudomonas putida under herbicide stress. Ann. Microbiol., 62(4); 1531-1540. https://doi.org/10.1007/s13213-011-0407-2 Andriani, L.T., Aini, L.Q., & Hadiastono, T. (2017). Glyphosate biodegradation by plant growth promoting bacteria and their effect to paddy germination in glyphosate contaminated soil. Degrad. Min. Lands Manag., 5(1); 995-1000. https://doi.org/10.15243/jdmlm.2017.051.995 Amorós, I., Alonso, J.L., Romaguera, S., & Carrasco, J.M. (2007). Assessment of toxicity of a glyphosate-based formulation using bacterial systems in lake water. Chemosphere., 67(11); 2221-2228.https://doi.org/10.1016/j.chemosphere.2006.12.020. Balthazor, T.M., & Hallas, L.E. (1986). Glyphosate-degrading microorganisms from industrial activated sludge. Appl. Environ. Microbiol., 51(2); 432-434. Benslama, O., & Boulahrouf, A. (2013). Isolation and characterization of glyphosate-degrading bacteria from different soils of Algeria.Afr. J. Microbiol. Res., 7(49); 5587-95. https://doi.org/10.5897/AJMR2013.6080. Benslama, O., & Boulahrouf, A. (2016). High-quality draft genome sequence of Enterobacter sp. Bisph2, a glyphosate-degrading bacterium isolated from a sandy soil of Biskra, Algeria. Genomics. data., 8; 61-66. http://dx.doi.org/10.1016/j.gdata.2016.03.005 Bhatt, V.K., & Iyer, B.D. (2020). A new spectrophotometric method for the determination of glyphosate: statistical optimization and application in biodegradation studies. International J. Environ. Sci. Technol., 18(4); 997-1008. https://doi.org/10.1007/s13762-020-02899-3 Bric, J.M., Bostok, RM., & Silverstone, SA. (1991). Rapid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol., 57, 535-538. Chennappa, G., Adkar-Purushothama, CR., Naik, MK., Suraj, U., & Sreenivasa, MY. (2014). Impact of pesticides on PGPR activity of Azotobacter sp. isolated from pesticide flooded paddy soils. Greener. J. Agric. Sci., 4(4); 117-129. http://dx.doi.org/10.15580/GJAS.2014.4.010314003. Duke, S.O. (2020). Glyphosate: environmental fate and impact. Weed. Science., 68(3); 201-207. https://doi.org/10.1017/wsc.2019.28 Elarabi, N.I., Abdelhadi, AA., Ahmed, R.H., Saleh, I., Arif, I.A., Osman, G., & Ahmed, D.S. (2020). Bacillus aryabhattai FACU: A promising bacterial strain capable of manipulate the glyphosate herbicide residues. Saudi J. Biol. Sci., 27(9); 2207-2214. https://doi.org/10.1016/j.sjbs.2020.06.050 Ermakova, I.T., Shushkova, T.V., Sviridov, A.V., Zelenkova, N.F., Vinokurova, N.G., Baskunov, B.P., & Leontievsky, A.A. (2017). Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Achromobacter sp. Arch. Microbiol., 199(5); 665-675. https://doi.org/10.1007/s00203-017-1343-8 Fan, J., Guoxia, Y., Haoyu, Z., Guanying, S., Yucong, G., Taiping, H., & Ke T. (2012). Isolation, identifcation and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. J. Gen. Appl. Microbiol., 58; 263–271. https://doi.org/10.2323/ jgam.58.263 Firdous, S., Iqbal S., & Anwar S. (2017). Optimization and modelling of glyphosate biodegradation by a novel Comamonas odontotermitis P2 through response surface methodology. Pedosphere. https:// doi.org/10.1016/S1002-0160(17)60381-3 Fu, G.M., Chen, Y., Li, R.Y., Yuan, X.Q., Liu, C.M., Li, B., & Wan, Y. (2017). Pathway and rate-limiting step of glyphosate degradation by Aspergillus oryzae A-F02. Prep. Biochem. Biotechnol. https://doi. org/10.1080/10826068.2017.1342260 Gill, JPK., Sethi, N., Mohan, A., Datta, S., & Girdhar, M. (2018). Glyphosate toxicity for animals. Environ. Chem. Lett., 16(2); 401-426. https://doi.org/10.1007/s10311-017-0689-0 Gordon, S.A., & Weber, R.O.P. (1951). Colorimetric estimation of indoleacetic acid. Plant. Physiol., 26(1); 192. Hadi, F., Mousavi, A., Noghabi, K.A., Tabar, H.G., & Salmanian, A.H. (2013). New bacterial strain of the genus Ochrobactrum with glyphosate-degrading activity. J. Environ. Sci. Health. B., 48; 208– 213. https://doi.org/10.1080/03601234.2013.730319 Hernández-Alomia, F., Ballesteros, I., & Castillejo, P. (2022). Bioremediation potential of glyphosate-degrading microorganisms in eutrophicated Ecuadorian water bodies. Saudi J. Biol. Sci., 29(3); 1550-1558. https://doi.org/10.1016/j.sjbs.2021.11.013 Heuer, H., Krsek, M., Baker, P., Smalla, K., & Wellington, E. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol., 63(8); 3233-3241. Hove-Jensen, B., Zechel, D.L., & Jochimsen, B. (2014). Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiol. Mol. Biol. Rev., 78(1); 176-197. https://doi.org/10.1128/MMBR.00040-13 International Agency for Research on Cancer (IARC). (2015). Some organophosphate insecticides and herbicides. IARC, Lyon Jacob, G.S., Garbow, J.R., Hallas, L.E., Kimack, N.M., Kishore, G.M., & Schaefer, J. (1988). Metabolism of glyphosate in Pseudomonas sp. strain LBr. Appl. Environ. Microbiol., 54(12); 2953-2958. Kaczynski, P., Lozowicka, B., Wolejko, E., Iwaniuk, P., Konecki, R., Dragowski, W., & Pietraszko, A. (2020). Complex study of glyphosate and metabolites influence on enzymatic activity and microorganisms association in soil enriched with Pseudomonas fluorescens and sewage sludge. J. Hazard. Mater., 393; 122443. https://doi.org/10.1016/j.jhazmat.2020.122443 Klimek, M., Lejczak, B., Kafarski, P., & Forlani, G. (2001). Metabolism of the phosphonate herbicide glyphosate by a non-nitrate-utilizing strain of Penicillium chrysogenum. Pest. Manag. Sci., 57; 815–821. https:// doi.org/10.1002/ps.366 Koller, V.J., Fürhacker, M., Nersesyan, A., Mišík, M., Eisenbauer, M., & Knasmueller, S. (2012). Cytotoxic and DNA-damaging properties of glyphosate and Roundup in human-derived buccal epithelial cells. Arch. Toxicol., 86;805-813. https://doi.org/10.1007/s00204-012-0804-8 Kryuchkova, Y0V., Burygin, G.L., Gogoleva, N.E., Gogolev, Y.V., Chernyshova, M.P., Makarov, O.E., & Turkovskaya, O.V. (2014). Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7. Microbiol. Res., 169(1); 99-105. https://doi.org/10.1016/j.micres.2013.03.002 Krzysko-Lupicka, T., Strof, W., Kubs, K., Skorupa, M., Wieczorek, P., Lejczak, B., & Kafarski, P. (1997). The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl. Microbiol. Biotechnol., 48; 549–552 Kumar, M., Yusuf, M.A., Chauhan, P.S., Nigam, M., & Kumar, M. (2017). Pseudomonas putida and Bacillus amyloliquefaciens alleviates the adverse effect of pesticides and poise soil enzymes activities in chickpea (Cicer arietinum L.) rhizosphere. Trop. Plant. Res., 4(3); 405-418. https://doi.org/10.22271/tpr.2017.v4.i3.054 Lerbs, W., Stock, M., & Parthier, B. (1990). Physiological aspects of glyphosate degradation in Alcaligenes spec. strain GL. Arch. Microbiol., 153(2); 146-150. Malviya, B.J., Jadeja, V.J., Sherathiya, H.M., Parakhia, M.V., Tomar, R.S., Vaja, M.B., & Sherathia, D.N. (2015). Bioremediation of glyphosate by bacteria isolated from glyphosate contaminated soil. J. Pure. Appl. Microbiol., 9(4); 3315-3320. Manogaran, M., Shukor, M.Y., Yasid, N.A., Khalil, K.A., & Ahmad S.A. (2018). Optimisation of culture composition for glyphosate degradation by Burkholderiavietnamiensis strain AQ5-12. 3 Biotech., 8; 108. https://doi.org/10.1007/s13205-018-1123-4 McAulife, K.S., Hallas, L.E., & Kulpa, C.F. (1990). Glyphosate degradation by Agrobacterium radiobacter isolated from activated sludge. J. Ind. Microbiol., 6; 219–221. https://doi.org/10.1007/BF01577700 Melo, C.A., Massenssini, A.M., Passos, A.B.R., Carvalho, F.P., Ferreira, L.R., Silva, A.A., & Costa, M.D. (2016). Isolation and characteristics of sulfentrazone-degrading bacteria. J. Environ. Sci. Health. B. J. ENVIRON. SCI. HEAL. B., 52(2); 115-121. https://doi.org/10.1080/03601234.2016.1248136 Mendiburu, F. (2020). agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-3. https://CRAN.R-project.org/package=agricolae Mertens, M., Höss, S., Neumann, G., Afzal, J., & Reichenbecher, W. (2018). Glyphosate, a chelating agent—relevant for ecological risk assessment. Environ. Sci. Pollut. Res., 25; 5298-5317. https://doi.org/10.1007/s11356-017-1080-1 Obojska, A., Lejczak, B., & Kubrak, M. (1999). Degradation of phosphonates by streptomycete isolates. Appl. Microbiol. Biotechnol., 51; 872-876. Obojska, A., Ternan, N.G., Lejczak, B., Kafarski, P., & McMullan, G. (2002). Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl. Environ. Microbiol., 68(4); 2081-2084. Parakhia, M.V., Tomar, R.S., Dalal, H., Kothari, V.V., Rathod, V.M., & Golakiya, B.A. (2019). Genome sequence analysis and identification of genes associated to pesticide degradation from enterobacter cloacae strain MR2. Int. J. Curr. Microbiol. App. Sci., 8; 2289-2304. Pipke, R., & Amrhein, N. (1988). Degradation of the phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC 13752. Appl. Environ. Microbiol., 54(5); 1293-1296. Rinaudi, L., Fujishige, N.A., Hirsch, A.M., Banchio, E., Zorreguieta, A., & Giordano, W. (2006). Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res. Microbiol., 157(9); 867-875. Sanger, F., Nicklen, S., & Coulson, AR. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci., 74(12); 5463-5467. Shahid, M., & Khan, M. (2018). Glyphosate induced toxicity to chickpea plants and stress alleviation by herbicide tolerant phosphate solubilizing Burkholderia cepacia PSBB1 carrying multifarious plant growth promoting activities. 3 Biotech., 8(2);1-17. https://doi.org/10.1007/s13205-018-1145-y Shahid, M., Zaidi, A., Ehtram, A., & Khan, M.S. (2019). In vitro investigation to explore the toxicity of different groups of pesticides for an agronomically important rhizosphere isolate Azotobacter vinelandii. PESTIC. BIOCHEM. PHYS., 155;33-44. https://doi.org/10.1016/j.pestbp.2019.03.006 Shahid, M., Manoharadas, S., Altaf, M., & Alrefaei, A.F. (2021). Organochlorine pesticides negatively influenced the cellular growth, morphostructure, cell viability, and biofilm-formation and phosphate-solubilization activities of Enterobacter cloacae strain EAM 35. ACS omega., 6(8); 5548-5559. https://doi.org/10.1016/j.chemosphere.2021.130372. Sezen, A., Ozdal, M., Kubra, K.O.C., & Algur, O.F. (2016). Isolation and characterization of plant growth promoting rhizobacteria (PGPR) and their effects on improving growth of wheat. J. Appl. Biol. Sci., 10(1); 41-46. Singh, B., & Singh, K. (2016). Microbial degradation of herbicides. Crit. Rev. Microbiol., 42(2); 245-261. https://doi.org/10.3109/1040841X.2014.929564 Singh, S., Kumar, V., & Singh, J. (2019). Kinetic study of the biodegradation of glyphosate by indigenous soil bacterial isolates in presence of humic acid, Fe(III) and Cu(II) ions. J. Environ. Chem., 7; 103098. https://doi.org/10.1016/j.jece.2019.103098 Sviridov, A.V., Shushkova, T.V., Zelenkova, N.F., Vinokurova, N.G., Morgunov, I.G., Ermakova, I.T., & Leontievsky, A.A. (2012). Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp. Appl. Microbiol. Biotechnol., 93; 787–796. https://doi.org/10.1007/s0025 3-011-3485-y. Thongprakaisang, S., Thiantanawat, A., Rangkadilok, N., Suriyo, T., & Satayavivad, J. (2013). Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem. Toxicol., 59; 129-136. https://doi.org/10.1016/j.fct.2013.05.057 Travaglia, C., Masciarelli, O., Fortuna, J., Marchetti, G., Cardozo, P., Lucero, M., & Reinoso, H. (2015). Towards sustainable maize production: Glyphosate detoxification by Azospirillum sp., & Pseudomonas sp. Crop. Prot., 77; 102-109. https://doi.org/10.1016/j.cropro.2015.07.003 Wijekoon, N., & Yapa, N. (2018). Assessment of plant growth promoting rhizobacteria (PGPR) on potential biodegradation of glyphosate in contaminated soil and aquifers. Groundw. Sustain. Dev., 7; 465-469. https://doi.org/10.1016/j.gsd.2018.02.001 Williams, GM., Kroes, R., & Munro, IC. (2000). Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul. Toxicol. Pharmacol., 31;117–165. https://doi.org/10.1006/rtph.1999.1371 Xu, B., Sun, Q.J., Lan, J.C., Chen, W.M., Hsueh, C.C., & Chen, B.Y. (2019). Exploring the glyphosate-degrading characteristics of a newly isolated, highly adapted indigenous bacterial strain, Providencia rettgeri GDB 1. J. Biosci. Bioeng., 128; 80–87. https://doi.org/10.1016/j.jbios c.2019.01.012 Yu, X.M., Yu, T., Yin, G.H., Dong, Q.L., An, M., Wang, H.R., & Ai, C.X. (2015). Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15. Genet. Mol. Res., 14; 14717–14730. https://doi.org/10.4238/2015 Zhan, H., Feng, Y., Fan, X., & Chen, S. (2018). Recent advances in glyphosate biodegradation. Appl. Microbiol. Biotechnol., 102; 5033–5043. https ://doi.org/10.1007/s00253-018-9035-0 Zhang, W., Li, J., Zhang, Y., Wu, X., Zhou, Z., Huang, Y., ... & Chen, S. (2022). Characterization of a novel glyphosate-degrading bacterial species, Chryseobacterium sp. Y16C, and evaluation of its effects on microbial communities in glyphosate-contaminated soil. Journal of Hazardous Materials, 432, 128689. https://doi.org/10.1016/j.jhazmat.2022.128689 Zhao, H., Tao, K., Zhu, J., Liu, S., Gao, H., & Zhou, X. (2015). Bioremediation potential of glyphosate-degrading Pseudomonas spp. strains isolated from contaminated soil. J. Gen. Appl. Microbiol., 61(5); 165-170. https://doi.org/10.2323/jgam.61.165. | ||
آمار تعداد مشاهده مقاله: 545 تعداد دریافت فایل اصل مقاله: 550 |