تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,031 |
تعداد مشاهده مقاله | 125,500,965 |
تعداد دریافت فایل اصل مقاله | 98,764,123 |
کارائی شبکههای عصبی مصنوعی و مدلهای خطی مختلط در پیشبینی ارزش اصلاحی | ||
علوم دامی ایران | ||
دوره 55، شماره 2، تیر 1403، صفحه 283-299 اصل مقاله (1.48 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijas.2023.353747.653928 | ||
نویسندگان | ||
سمیرا گویلی1؛ محمد رزم کبیر* 1؛ امیر رشیدی1؛ رزگار عرب زاده2 | ||
1گروه علوم دامی، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران | ||
2گروه مهندسی عمران و محیط زیست، دانشگاه واترلو، واترلو، اُونتاریو، کانادا | ||
چکیده | ||
شبکههای عصبی مصنوعی در دههی اخیر رشد چشمگیری در زمینههای مختلف علوم و از جمله علوم دامی داشته است. پژوهش کنونی برای بررسی قابلیت کاربرد شبکههای عصبی مصنوعی در پیشبینی ارزشهای اصلاحی صفت وزن از شیرگیری در بز مرخز انجام شد. در بخش نخست ارزشهای اصلاحی صفت مذکور با کمک معادلات مختلط، بر اساس مدل حیوانی و توسط نرمافزار DMU پیشبینی شد. در بخش دوم، همان دادههای مزرعهایی بهعنوان پارامترهای ورودی برای اجرای شبکههای عصبی مصنوعی استفاده شدند. برای اجرای شبکههای عصبی مصنوعی توسط نرمافزار R، ابتدا دادهها طی چند مرحله کنترل و پردازش شدند که شامل جایگذاری دادههای گمشده و نامتعارف با روش PPCA، انتخاب متغیرها بر اساس تجزیه وتحلیل همبستگی، تبدیل مقیاس و نهایتا بخشبندی دادهها به دو دسته آموزش (75%) و آزمون (25%) بود. در پژوهش کنونی سه مدل از شبکههای عصبی مصنوعی اجرا شدند که شامل مدلهای پرسپترون چند لایه(MLP)، تابع پایه شعاعی(RBF) و رگرسیون بردار پشتیبان (SVR) بودند. در مرحله بعد برای هر کدام از این مدلها بهترین معماری جستجو شدکه شامل تعداد لایه پنهان و تعداد نورونها در هر لایه بود. هر سه مدل با تعداد دو لایه پنهان، بهترین معماری و کارائی را داشتند. مقادیر عددی همبستگی ارزش اصلاحی حقیقی (ارزش اصلاحی حاصل از معادلات مختلط) و ارزش اصلاحی پیشبینی شده (ارزش اصلاحی حاصل از شبکههای عصبی مصنوعی) برای مدلهای MLP،RBF و SVR در دادههای مزرعهای به ترتیب 72/0، 49/0 و 73/0 برآورد شد. نتایج پژوهش براساس دادههای مزرعهای نشان داد که مدلهای MLP و SVR با ضریب همبستگی بالاتر و مقدار خطای پایینتری، قابلیت پیشبینی صفت ارزش اصلاحی وزن شیرگیری را دارند. | ||
کلیدواژهها | ||
ارزیابی ژنتیکی؛ ارزش اصلاحی؛ شبکههای عصبی مصنوعی؛ بز مرخز؛ وزن شیرگیری | ||
عنوان مقاله [English] | ||
Performance of Artificial Neural Networks (ANNs) and linear mixed models for prediction of breeding values | ||
نویسندگان [English] | ||
Samira Gavili1؛ Mohammad Razmkabir1؛ Amir Rashidi1؛ Rezgar Arabzadeh2 | ||
1Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran | ||
2Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada | ||
چکیده [English] | ||
Artificial neural networks (ANN) have been widely used for both prediction and classification tasks in many fields of knowledge; however, few studies are available on animal science. The objective of this study was to prediction of breeding values of weaning weight in Markhoz goats based on the Mixed Model Equation (MME) and Artificial Neural Networks (ANNs). Quality control and calculation of descriptive statistics was performed using the GLM procedure of the SAS statistical package. The pedigree file included 5541 kids produced by 261 bucks and 1616 does. In the first step, genetic evaluations and Best Linear Unbiased Prediction (BLUP) of breeding values for weaning weight was computed with the mixed model equations, animal model by DMU program. Later, unique dataset was introduced to the ANN models by the R statistical program. A variety of models including, multilayer perceptron (MLP), radial basis function (RBF) and Support Vector Regression (SVR) were used to build the neural models. The artificial neural networks were trained and several networks (different hidden layers and nodes/ neurons) were evaluated. In artificial neural networks, the data were randomly divided to two parts (75% training and 25% for test/validation). Best architecture was selected according to the mean square of error and correlation. Correlation between true breeding value (BVs predicted by MME) and estimated breeding value (BVs predicted by ANNs) for MLP, RBF and SVR models were 0.72, 0.49 and 0.73, respectively. Analysis of farm data showed that the MLP and SVR models have higher performance than RBF for prediction of breeding values or ranking of individuals. | ||
کلیدواژهها [English] | ||
Artificial Neural Network, Breeding Value, Genetic Evaluation, Markhoz Goat, Weaning Weight | ||
مراجع | ||
بهرامی، بلال؛ رزمکبیر، محمد؛ محمودی، پیمان (1399). ارزیابی افت همخونی برای صفات رشد در نشخوارکنندگان کوچک: یک مطالعه فراتحلیلی. نشریه علوم دامی ایران. 51 (3). 231-241. قاسمیراد، محمد رضا. (1394). مقایسه مدلهای مختلط دامی و شبکههای عصبی مصنوعی برای پیشبینی ارزشهای اصلاحی در دادههای واقعی و شبیهسازی شده. پایاننامه کارشناسی ارشد ژنتیک و اصلاح نژاد دام، دانشکده کشاورزی، دانشگاه بوعلی سینا.
REFERENCES Abdollahi-Arpanahi, R., Gianola, D. & Peñagaricano, F. (2020). Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes. Genetics Selection Evolution.52 (1), 1-15. Adil, M., Ullah, R., Noor, S. &Gohar, N. (2022). Effect of number of neurons and layers in an artificial neural network for generalized concrete mix design. Neural Computing and Applications. 34, pages8355–8363. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control. 19 (6): 716–723. Akkol, S., Akilli, A. &Cemal, I. )2017(. Comparison of artificial neural network and multiple linear regression for prediction of live weight in hair goats. Journal of Agricultural Sciences, 27(1): 21-29. Bahrami, B., Razmkabir, M. &Mahmoudi, M, P (2020). Inbreeding depression for growth traits in small ruminants: A meta-analysis. Iranian Journal of Animal Science. 51(3), 231-241. (in Persian). Beale, R. & Jackson, T. (2017). Neural Computing - An Introduction. 1st Edition. CRC Press. ISBN: 978-1138413092. Bishop, C. M. (2006). Pattern recognition and machine learning. Springer New York, NY. 738 pages. ISBN: 978-0-387-31073-2. Bourdon, R. (1999). Understanding Animal Breeding. 2nd edition. Pearson, 538 pages. Craddock, R. J. and Warwick, K. (1996). Multi-layer radial basis function networks: an extension to the radial basis function. In: Proceedings of International Conference on Neural Networks, 3-6 Jun 1996, Washington DC, USA, pp. 700-705. Fernandez, C., Soria, E., Martin, J.D. & Serrano, A.J. (2006). Neural networks for animal science applications: Two case studies. Expert Systems with Applications. 31(2): 444-450. Gandhi, R.S., Raja, T. V., Ruhil, A. P. & Kumar, A. (2010). Artificial neural network versus multiple regression analysis for prediction of lifetime milk production in Sahiwal cattle. Journal of Applied Animal Research. 38 (2), 233-237. García, S., Luengo, J. & Herrera, F. (2015). Data Preprocessing in Data Mining. Springer. 336 pages. ISBN: 978-3-319-10246-7. Ghasemirad, M.R. (2016). Comparison of animal mixed models and artificial neural networks for prediction of breeding values in simulated data. MSc Thesis. Bu-Ali Sina University. Hamadan. Iran (in Persian). Ghotbaldini, H., Mohammadabadi, M., Nezamabadi-pour, H., Babenko, O. I., Bushtruk, M. V. &Tkachenko, S. V. (2019). Predicting breeding value of body weight at 6-month age using Artificial Neural Networks in Kermani sheep breed. ActaScientiarum Animal Sciences, 41(1):45282 Gorgulu, O. (2012). Prediction of 305-day milk yield in Brown Swiss cattle usingartificial neural networks. South African Journal of Animal Science. 42(3):280-287. Grzesiak, W., Lacroix, R.R., Wojcik, J. &Blaszczyk, P. (2003). A comparison of neural network and multiple regression predictions for 305-day lactation yield using partial lactation records. Canadian Journal of Animal Science, 83(2): 307-310. Hernandez-Ramos, P.A., Vivar-Quintana, A.M. & Revilla, I. (2019). Estimation of somatic cell count levels of hard cheeses using physicochemical composition and artificial neural networks. Journal of Animal Science, 102: 1-11. Henderson, C.R. (1975). Best linear unbiased estimation & prediction under a selection model. Biometrics, 31(2): 423-447. Henderson, C. R. (1984). Application of Linear models in animal breeding. University of Guelph, Guelph, Ontario, Canada. Khan, M. A., Khan, R. & Ansari, M. A. (2022). Application of Machine Learning in Agriculture. Academic Press; 1st edition. 270 pages. ISBN: 0323905501. Khorshidi‐Jalali, M., Mohammadabadi, M.R., Esmailizadeh, A., Barazandeh, A. &Babenko, O.I. (2019). Comparison of artificial neural network and regression models for prediction of body weight in Raini Cashmere Goat. Iranian Journal of Applied Animal Science, 9(3), 453-461. Krenker, A., Bester, J., & Kos, A. (2011). Introduction to the Artificial Neural Networks. Computer Science. DOI:10.5772/15751. Kujawa, S. &Niedbala, G. (2021). Artificial Neural Networks in Agriculture.Multidisciplinary Digital Publishing Institute. 283 pages. ISSN 2077-0472. Lacroix, R., Wade, K.M., Kok, R. & Hayes, J.F. (1995). Prediction of cow performance with a connectionist model. Transactions of the American Society of Agricultural Engineer, 38: 1573–1579. McQueen, R.J., Garner, S.R., Nevill-Manning, C.G. & Witten, I.H. (1995). Applying machine learning to agricultural data. Computers and Electronics in Agriculture, 12(4), 275–293. Magotra, A., Bangar, Y.C. & Yadav, A.S. (2022). Neural network and Bayesian-based prediction of breeding values in Beetal goat. Tropical Animal Health and Production. 54, 282. Norouzian, M. A., Bayatani, H. &VakiliAlavijeh, M. (2021). Comparison of artificial neural networks and multiple linear regression for prediction of dairy cow locomotion score. Veterinary Research Forum. 12(1): 33–37. Nosrati, M., Hafezian, S.H. &Gholizadeh, M. (2020). Estimating Heritabilities and Breeding Values for real and Predicted Milk Production in Holestein Dairy Cows with Artificial Neural Network and Multiple Linear Regression Models. Journal of Applied Animal Science. 11: 67-78. Pour Hamidi, S., Mohammadabadi, M.R., AsadiFoozi, M. &Nezamabadi-pour, H. (2017). Prediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks. Journal of Livestock Science and Technologies, 5 (2): 53-61. R Core Team. (2021). R: A language and environment for statisticalcomputing. R Foundation for Statistical Computing, Vienna, Austria.URL https://www.R-project.org/. Rashidi, A., Bishop, S. C. &Matika, O. (2011). Genetic parameter estimates for pre-weaning performance and reproduction traits in Markhoz goats. Small Ruminant Research. 100: 100-106. Razmkabir, M. (2011). Genetic Evaluation of Production Traits with Random Regression Models in Holstein Dairy Cattle. PhD Dissertation. University of Tehran, Karaj, Iran. Rosado RDS, Cruz CD, Barili LD, de Souza Carneiro JE, Carneiro PCS, Carneiro VQ, da Silva JT, & Nascimento M. (2020). Artificial Neural Networks in the Prediction of Genetic Merit to Flowering Traits in Bean Cultivars. Agriculture. 10(12):638. Roush, W.B., Dozier, W.A. &Branton, S.L. (2006). Comparison of Gompertz and neural network model of broiler chicken growth. Journal of Poultry Science, 85: 794-797. Shahinfar, S., Mehrabani-Yeganeh, H., Lucas, C., Kahlor, A., Kazemian, M. &Weigel, K. (2012). Prediction of Breeding Values for dairy cattle using artificial neural networks and neuro-fuzzy systems. Computational and Mathematical Methods in Medicine, Article ID 127130, 9 pages. Sharma, A.K., Sharma, R.K. &Kasana, H.S. (2007). Prediction of first lactation 305-day milk yield in Karan Fries dairy cattle using ANN modeling. Applied Soft Computing, 7(3): 1112-1120. Russell, S. &Norvig, P. (2009). Artificial Intelligence: A Modern Approach. 3rd edition. Pearson Education, Inc. 1152 pages. ISBN 978-0136042594. Zhao, Y., Pei, J., & Chen, H. (2019). Multi-layer radial basis function neural network based on multi-scale kernel learning. Applied Soft Computing. 82: 105541. | ||
آمار تعداد مشاهده مقاله: 190 تعداد دریافت فایل اصل مقاله: 214 |