تعداد نشریات | 161 |
تعداد شمارهها | 6,552 |
تعداد مقالات | 70,714 |
تعداد مشاهده مقاله | 124,597,869 |
تعداد دریافت فایل اصل مقاله | 97,803,252 |
بررسی کیفیت گوشت و روغن مصرف شده در ناگت مرغ با استفاده از بینی الکترونیکی و پردازش تصویر | ||
مهندسی بیوسیستم ایران | ||
دوره 54، شماره 2، تیر 1402، صفحه 1-14 اصل مقاله (1.37 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2023.363744.665517 | ||
نویسندگان | ||
حافظ ازگلی1؛ سید سعید محتسبی* 2؛ سلیمان حسین پور3؛ محمد حسین پور زرنق1 | ||
1گروه مهندسی ماشینهای کشاورزی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، دانشگاه تهران، کرج، ایران | ||
2استاد، گروه مهندسی ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
3دانشیار، گروه مهندسی ماشینهای کشاورزی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
ناگت مرغ یک محصول فراوریشده از گوشت مرغ است و به دلیل عطر، طعم و رنگ خاص آن مورد توجه مصرفکنندگان است. گوشت سالم از فاکتورهای مهم کیفی ناگت هستند. در فرایند تولید، محصول به مدت 1 دقیقه با دمای 185 درجه سلسیوس و به شکل عمیق سرخشده و به همین دلیل سلامت روغن مصرفی اثر معنیداری بر سلامت مصرفکننده دارد. در این تحقیق برای اولین بار با استفاده از روشهای خودکار و غیر مخرب بویایی الکترونیکی و بینایی ماشین کیفیت گوشت و روغن مصرف شده در ناگت مرغ بررسی شد. ویژگی سلامت گوشت (سالم و فاسد) و روغن مصرفی (سالم و سوخته) بهعنوان شاخص کیفیت در نظر گرفته شد. پس از سرخ کردن تیمارها، روغن اضافی از نمونهها گرفتهشده، سپس نمونهها عکسبرداری شده و با ماشین بویایی مورد ارزیابی قرار گرفتند. در این تحقیق مقادیر بهینه پارامترهای مهم در سامانه بویایی الکترونیکی از جمله زمانهای مورد نیاز جهت تشخیص بو و پاک کردن آن از سنسورها تعیین شده و همچنین اثر پاسخ هر حسگر بررسی شد. برای تحلیل و طبقهبندی دادهها روش تحلیل مؤلفه اصلی (PCA)، تحلیل تفکیک خطی (LDA) و شبکه عصبی مصنوعی (ANN) استفاده شدند. نتایج تحلیل دادههای هر دو سامانه بینایی و بویایی مشابهت داشتند و تفکیک سلامت گوشت و روغن با دقت بالای 90 درصد انجام شد. نتایج ارزیابی بخش سامانه ماشین بویایی با نتایج سامانه ماشین بینایی همخوانی داشته است و میتوان از ترکیب دو روش در برآورد ویژگیهای رنگ و عطر ناگت مرغ استفاده کرد. | ||
کلیدواژهها | ||
تحلیل تفکیک خطی؛ تحلیل مؤلفه اصلی؛ ماشین بویایی؛ ماشین بینایی؛ کیفیت روغن | ||
عنوان مقاله [English] | ||
Investigating meat and oil quality in chicken nuggets using electronic nose and image processing techniques | ||
نویسندگان [English] | ||
Hafez Ozgoli1؛ Seyed Saeid Mohtasebi2؛ Soleiman Hosseinpour3؛ Mohammad Hosseinpour-Zarnaq1 | ||
1Department of Agricultural Machinery Engineering, Faculty of Agriculture, School of Agriculture & Natural Resources, University of Tehran, Karaj, Iran | ||
2Professor, Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
3Associate Professor, Department of Agricultural Machinery Engineering, Faculty of Agriculture, School of Agriculture & Natural Resources, University of Tehran, Karaj, Iran | ||
چکیده [English] | ||
Chicken nugget is a popular processed form of chicken meat. Nugget’s special flavor and color are interesting for consumers. Healthy meat is an important quality factor of nuggets. In the production process, the nugget is deeply fried for 1 minute at 185 °C. So, oil quality has an important effect on the final quality and healthy aspects. In this research, for the first time, the meat and oil quality used in chicken nuggets was checked using automatic and non-destructive techniques including an electronic nose (E-nose) and machine vision system. Meat health (healthy and spoiled) and consumed oil (healthy and burnt) were considered quality indicators. After frying, the excess oil was removed, and then the samples were subjected to machine vision and electronic nose systems for quality evaluations. In this research, the optimum of important parameters in the E-nose and the required times for sensing and removing the odor were determined. Also, the sensors' response was investigated. Principal component analysis (PCA), linear discriminant analysis (LDA) and artificial neural network (ANN) were used to analyze and classify the data. The accuracy results of both machine vision and electronic nose systems were similar and healthy meat and healthy oil classes were detected with up to 90 % accuracy. The evaluation results of the E-nose were similar to the machine vision system. Therefore, the combination of the two methods can be used in the measurement of color and smell characteristics. | ||
کلیدواژهها [English] | ||
Electronic nose, linear discriminant analysis, Machine vision, Oil quality, Principal component analysis | ||
مراجع | ||
Abdullah, A. H., Shakaff, A. Y., Adom, A. H., Zakaria, A., Saad, F. S., & Kamarudin, L. M. (2012). Chicken farm malodour monitoring using a portable electronic nose system. Chemical Engineering Transactions, 30, 55-60. https://doi.org/10.3303/CET1230010. Adedeji, A. A., Liu, L., & Ngadi, M. O. (2011). Microstructural evaluation of deep-fat fried chicken nugget batter coating using confocal laser scanning microscopy. Journal of food engineering, 102(1), 49-57. https://doi.org/10.1016/j.jfoodeng.2010.08.002. Afsharpad, K., Ghasemian, H. S., Akhlagh-Nejat, L., Ketabchi-Baradaran, M., Boustani, M., Pazhar, T., Pourasghari, N., Khanghahi-Abyaneh, H., Raoufi, A., Shojaei, A. H., Shahbazizadeh, S., Sadeghi-Poursheijani, M., Sarrafzadeh, A. H., Samadi, S., Zafari, G., Gholampour-Sigarudi, N., Kazemi, A., Moghnian, M. T., Nemati, H. R., & Yadranji-Aghdam, S (2006). Procedures for processing, production and packaging of ready-to-eat frozen chicken nuggets. Iran Institute of Standards and Industrial Research, National Standard of Iran, No. 9869. (In Persian) Barbut, S. (2016). Poultry products processing: an industry guide. CRC press. Cui, S., Wang, J., Yang, L., Wu, J., & Wang, X. (2015). Qualitative and quantitative analysis on aroma characteristics of ginseng at different ages using E-nose and GC–MS combined with chemometrics. Journal of pharmaceutical and biomedical analysis, 102, 64-77. https://doi.org/10.1016/j.jpba.2014.08.030. Barbut, S. (2012). Convenience breaded poultry meat products–New developments. Trends in Food Science & Technology, 26(1), 14-20. https://doi.org/10.1016/j.tifs.2011.12.007. Di Rosa, A. R., Leone, F., Cheli, F., & Chiofalo, V. (2017). Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment–A review. Journal of Food Engineering, 210, 62-75. https://doi.org/10.1016/j.jfoodeng.2017.04.024. Chen, J., Gu, J., Zhang, R., Mao, Y., & Tian, S. (2019). Freshness evaluation of three kinds of meats based on the electronic nose. Sensors, 19(3), 605. https://doi.org/10.3390/s19030605 Dissing, B. S., Papadopoulou, O. S., Tassou, C., Ersbøll, B. K., Carstensen, J. M., Panagou, E. Z., & Nychas, G. J. (2013). Using multispectral imaging for spoilage detection of pork meat. Food and Bioprocess Technology, 6, 2268-2279. https://doi.org/10.1007/s11947-012-0886-6 Fayyaz, P. (2017). Application of an electronic nose system based on metal oxide semiconductor sensors for detection of lemon essential oils. Unpublished MSc thesis, Department of Agricultural Machinery Engineering, Faculty of Agriculture and Natural Resources, University of Tehran. (In Persian) Foroughi Rad, A., Mohtasebi, S. S., Ghasemi-Varnamkhasti, M., & Omid, M. (2014). Nondestructive quality evaluation of Abbot Kiwifruit using electronic nose. Iranian Journal of Biosystems Engineering, 45 (1), 1-9. https://10.22059/IJBSE.2014.51285 Gorji-Chakespari, A., Nikbakht, A. M., Sefidkon, F., Ghasemi-Varnamkhasti, M., & Valero, E. L. (2017). Classification of essential oil composition in Rosa damascena Mill. Genotypes using an electronic nose. Journal of Applied Research on Medicinal and Aromatic Plants, 4, 27-34. https://doi.org/10.1016/j.jarmap.2016.07.004. Hai, Z., & Wang, J. (2006). Electronic nose and data analysis for detection of maize oil adulteration in sesame oil. Sensors and Actuators B: Chemical, 119(2), 449-455. https://doi.org/10.1016/j.snb.2006.01.001. Hajinezhad, M. (2015). Classification of different floral origin honeys and fake honey using an electronic nose system. Unpublished MSc thesis, Department of Agricultural Machinery Engineering, Faculty of Agriculture and Natural Resources, University of Tehran. (In Persian) Han, L., Chen, M., Li, Y., Wu, S., Zhang, L., Tu, K., Pan, L., Wu, J., & Song, L. (2022). Discrimination of different oil types and adulterated safflower seed oil based on electronic nose combined with gas chromatography-ion mobility spectrometry. Journal of Food Composition and Analysis, 114, 104804. https://doi.org/10.1016/j.jfca.2022.104804. Heidarbeigi, K (2014). Implementation, construction and evaluation of saffron adulteration system based on the electronic tongue and electronic nose. Unpublished Ph.D. Thesis, Department of Agricultural Machinery Engineering, Faculty of Agriculture and Natural Resources, University of Tehran. (In Persian) Ireri, D., Belal, E., Okinda, C., Makange, N., & Ji, C. (2019). A computer vision system for defect discrimination and grading in tomatoes using machine learning and image processing. Artificial Intelligence in Agriculture, 2, 28-37. https://doi.org/10.1016/j.aiia.2019.06.001. Majchrzak, T., Wojnowski, W., Głowacz-Różyńska, A., & Wasik, A. (2021). On-line assessment of oil quality during deep frying using an electronic nose and proton transfer reaction mass spectrometry. Food Control, 121, 107659. https://doi.org/10.1016/j.foodcont.2020.107659 Martynenko, A. (2017). Computer vision for real-time control in drying. Food Engineering Reviews, 9, 91-111. https://doi.org/10.1007/s12393-017-9159-5. Mohi-Alden, K. M., Omid, M., Rajabipour, A., Tajeddin, B., & Firouz, M. S. (2019). Quality and shelf-life prediction of cauliflower under modified atmosphere packaging by using artificial neural networks and image processing. Computers and Electronics in Agriculture, 163, 104861. https://doi.org/10.1016/j.compag.2019.104861. Musatov, V. Y., Sysoev, V. V., Sommer, M., & Kiselev, I. (2010). Assessment of meat freshness with metal oxide sensor microarray electronic nose: A practical approach. Sensors and Actuators B: Chemical, 144(1), 99-103. https://doi.org/10.1016/j.snb.2009.10.040 Nturambirwe, J. F. I., & Opara, U. L. (2020). Machine learning applications to non-destructive defect detection in horticultural products. Biosystems engineering, 189, 60-83. https://doi.org/10.1016/j.biosystemseng.2019.11.011. Örnek, Ö., & Karlik, B. (2012, May). An overview of metal oxide semiconducting sensors in electronic nose applications. In Proceedings of the 3rd International Symposium on Sustainable Development, Sarajevo, Bosnia and Herzegovina (Vol. 2, pp. 506-515). Patil, A. C., Mugilvannan, A. K., Liang, J., Jiang, Y. R., & Elejalde, U. (2023). Machine learning-based predictive analysis of total polar compounds (TPC) content in frying oils: A comprehensive electrochemical study of 6 types of frying oils with various frying timepoints. Food Chemistry, 419, 136053. https://doi.org/10.1016/j.foodchem.2023.136053 Qiao, J., Wang, N., Ngadi, M. O., & Kazemi, S. (2007). Predicting mechanical properties of fried chicken nuggets using image processing and neural network techniques. Journal of food engineering, 79(3), 1065-1070. https://doi.org/10.1016/j.jfoodeng.2006.03.026. Ramesh, B., Mohtasebi, S. S., & Rafiee, S. (2019). Classification of Different Iranian Rice Varieties and Frauded Rice Based on Volatile Compounds Detected by Electronic Nose Method. Iranian Journal of Biosystems Engineering, 50 (3), 595-606. https://doi.org 10.22059/IJBSE.2019.263221.665081. Roy, M., & Yadav, B. K. (2022). Electronic nose for detection of food adulteration: A review. Journal of Food Science and Technology, 1-13. https://doi.org/10.1007/s13197-021-05057-w. Russo, M., di Sanzo, R., Cefaly, V., Carabetta, S., Serra, D., & Fuda, S. (2013). Non-destructive flavour evaluation of red onion (Allium cepa L.) Ecotypes: An electronic-nose-based approach. Food chemistry, 141(2), 896-899. https://doi.org/10.1016/j.foodchem.2013.03.052. Sanaeifar, A. (2013). Design, development and implementation of an electronic nose system based on metal oxide semiconductor (MOS) sensors to monitor banana ripening. Unpublished MSc thesis, Department of Agricultural Machinery Engineering, Faculty of Agriculture and Natural Resources, University of Tehran. (In Persian) Taheri-Garavand, A., Fatahi, S., Omid, M., & Makino, Y. (2019). Meat quality evaluation based on computer vision technique: A review. Meat science, 156, 183-195. https://doi.org/10.1016/j.meatsci.2019.06.002. Timsorn, K., Lorjaroenphon, Y., & Wongchoosuk, C. (2017). Identification of adulteration in uncooked Jasmine rice by a portable low-cost artificial olfactory system. Measurement, 108, 67-76. https://doi.org/10.1016/j.measurement.2017.05.035. Teruel, M. R., García-Segovia, P., Martínez-Monzó, J., Linares, M. B., & Garrido, M. D. (2014). Use of vacuum-frying in chicken nugget processing. Innovative Food Science & Emerging Technologies, 26, 482-489. https://doi.org/10.1016/j.ifset.2014.06.005. Udomkun, P., Innawong, B., & Jeepetch, K. (2019). Computer vision system (CVS) for color and surface oil measurements of durian chips during post-frying. Journal of Food Measurement and Characterization, 13, 2075-2081. https://doi.org/10.1007/s11694-019-00128-1. Upadhyay, R., Sehwag, S., & Mishra, H. N. (2017). Electronic nose guided determination of frying disposal time of sunflower oil using fuzzy logic analysis. Food Chemistry, 221, 379-385. https://doi.org/10.1016/j.foodchem.2016.10.089 Wojnowski, W., Majchrzak, T., Dymerski, T., Gębicki, J., & Namieśnik, J. (2017). Poultry meat freshness evaluation using electronic nose technology and ultra-fast gas chromatography. Monatshefte Für Chemie-Chemical Monthly, 148, 1631-1637. https://doi.org/10.1007/s00706-017-1969-x. Yuangyai, C., Matvises, P., & Janjarassuk, U. (2013). Image-based analysis for characterization of chicken nugget quality. Jurnal Teknik Industri, 15(2), 125-130. https://doi.org/10.9744/jti.15.2.125-130. Zheng, Z., & Zhang, C. (2022). Electronic noses based on metal oxide semiconductor sensors for detecting crop diseases and insect pests. Computers and Electronics in Agriculture, 197, 106988. https://doi.org/10.1016/j.compag.2022.106988. Zhu, L., Spachos, P., Pensini, E., & Plataniotis, K. N. (2021). Deep learning and machine vision for food processing: A survey. Current Research in Food Science, 4, 233-249. https://doi.org/10.1016/j.crfs.2021.03.009 | ||
آمار تعداد مشاهده مقاله: 235 تعداد دریافت فایل اصل مقاله: 194 |