تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,036 |
تعداد مشاهده مقاله | 125,508,927 |
تعداد دریافت فایل اصل مقاله | 98,772,216 |
تحلیل و ارزیابی انتشار جیوه به عنوان یک آلاینده محیط زیستی از بخش تولید برق کشور | ||
محیط شناسی | ||
مقاله 3، دوره 49، شماره 4، بهمن 1402، صفحه 421-436 اصل مقاله (1.06 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jes.2023.360488.1008419 | ||
نویسنده | ||
سعید نظری کودهی* | ||
ایران-تهران-پژوهشگاه نیرو-پژوهشکده انرژی و محیط زیست-گروه محیط زیست | ||
چکیده | ||
نیروگاههای حرارتی از مهمترین منابع انتشار جیوه می باشند. ترسیب جیوه به عنوان یک آلاینده محیط زیستی در طبیعت تاثیر منفی بر سلامت انسان دارد. مطابق ماده 8 کنوانسیون میناماتا کشورهای عضو موظف به تخمین انتشار جیوه از منابع انسان ساخت و ارائه بهترین روشهای کنترلی هستند. در این تحقیق تحلیل و ارزیابی انتشار جیوه از بخش تولید برق کشور در افق زمانی سال های 2011 تا 2021 با استفاده از دادههای سوخت مصرفی نیروگاهها، جعبه ابزار ارائه شده توسط UNEP و مدل STIRPAT انجام شده است. مطابق نتایج این تحقیق، میزان میانگین انتشار جیوه و ضریب انتشار جیوه در بخش تولید برق کشور در بازه زمانی مورد مطالعه به ترتیبkg 6/505 و kg/TWh 85/1 بوده است. میانگین ضریب انتشار جیوه برای گاز طبیعی، مازوت و گازوئیل به ترتیبkg/TWh 05/0، kg/TWh 14 و kg/TWh 29/1 محاسبه شده است. میانگین هزینه خارجی ناشی از انتشار جیوه در حدودU$/TWh 67/2616 و US$/TWh 11/5931 به ترتیب با لحاظ حداقل میزان مواجه و بدون لحاظ حداقل میزان مواجه محاسبه گردیده است. نتایج مدل STIRPAT نشان داد که افزایش یک درصدی عواملی مشتمل بر جمعیت ، سهم تولید برق از مصرف گاز طبیعی و سهم تولید برق از مصرف سوختهای مایع موجب افزایش به ترتیب 83/14، 3/0 و 49/1 درصدی در میزان انتشار جیوه شده است. همچنین افزایش یک درصدی عواملی مشتمل بر تولید ناخالص ملی، شدت تولید انرژی الکتریکی و سهم تولید برق با استفاده از منابع غیر فسیلی موجب کاهش به ترتیب 8/4، 74/4 و 15/0 درصدی در میزان انتشار جیوه گردیده است. | ||
کلیدواژهها | ||
انتشار جیوه؛ فاکتور انتشار؛ مدل STIRPAT؛ نیروگاه های حرارتی؛ هزینه های خارجی | ||
عنوان مقاله [English] | ||
Analysis and evaluation of mercury emissions as an environmental pollutant from Iran’s power sector | ||
نویسندگان [English] | ||
Saeed Nazari Kudahi | ||
Department of Environment, Energy and Environment Research Center, Niroo Research Institute, Tehran, Iran. | ||
چکیده [English] | ||
Thermal power plants are one of the most important sources of mercury emissions. Mercury deposition in nature has a negative implication on human health. According to Article 8 of the Minamata Convention, all parties are obliged to estimate mercury emissions from anthropogenic sources and provide the best available control technologies. In this research, the analysis of mercury emissions from Iran’s power sector has been illustrated using the UNEP toolkit and the STIRPAT model for the period from 2011 to 2021. The average amount of mercury emissions and mercury emission factor were estimated as 505.6 kg and 1.85 kg/TWh respectively. The average emission factor of mercury for natural gas, heavy oil and gas oil combustion was calculated as 0.05 kg/TWh, 14 kg/TWh, and 1.29 kg/TWh respectively. The average amount of the external cost of electricity generation due to mercury emissions was calculated as 2,616.67 US$/TWh and 5,931.11 US$/TWh in two scenarios with and without the minimum exposure threshold respectively. The results of the STIRPAT model, it was indicated that a one-percent increase in factors including population, the share of electricity generation from natural-gas consumption, and the share of electricity generation from liquid fuels consumption led to an increase of 14.83, 0.3 and 1.49 percent respectively in mercury emissions. In addition, as a result of a one-percent increase in factors including gross national product per capita, intensity of electric energy generation and the share of electricity generation using non-fossil sources led to a decrease of 4.8, 4.74 and 0.15 percent respectively in mercury emissions. | ||
کلیدواژهها [English] | ||
Mercury emissions, Emission factor, STIRPAT model, Thermal power plants, External costs | ||
مراجع | ||
Agarwalla, H., Senapati, R. N., & Das, T. B. (2021). Mercury emissions and partitioning from Indian coal-fired power plants. Journal of Environmental Sciences, 100, 28-33. https://doi.org/10.1016/j.jes.2020.06.035.
Bourtsalas, A. T., & Themelis, N. J. (2019). Major sources of mercury emissions to the atmosphere: The US case. Waste Management, 85, 90-94. https://doi.org/10.1016/j.wasman.2018.12.008.
Commission for Environmental Cooperation. (2023). North American Power Plant Air Emissions. CEC. http://www. cec.org/sites/default/napp/en/index.php
Charvát, P., Klimeš, L., Pospíšil, J., Klemeš, J. J., & Varbanov, P. S. (2020). An overview of mercury emissions in the energy industry-A step to mercury footprint assessment. Journal of Cleaner Production, 267, 122087. https://doi.org/10.1016/j.jclepro.2020.122087.
Chen, Y., & Mu, H. (2023). Analysis of influencing factors of CO2 emissions based on different coal dependence zones in China. Economic Research-Ekonomska Istraživanja, 36(2), 2177182. https://doi.org/10.1080/1331677X. 2023.2177182.
Chekouri, S. M., Chibi, A., & Benbouziane, M. (2020). Examining the driving factors of CO2 emissions using the STIRPAT model: the case of Algeria. International Journal of Sustainable Energy, 39(10), 927-940. https://doi.org/10.1080/14786451.2020.1770758.
Chou, C. P., Chiu, C. H., Chang, T. C., & Hsi, H. C. (2021). Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes. Journal of the Air & Waste Management Association, 71(5), 553-563. https://doi.org/10.1080/10962247.2020.1860158.
Dabrowski, J. M., Ashton, P. J., Murray, K., Leaner, J. J., & Mason, R. P. (2008). Anthropogenic mercury emissions in South Africa: Coal combustion in power plants. Atmospheric Environment, 42(27), 6620-6626. https://doi.org/10.1016/j.atmosenv.2008.04.032.
Environmental Protection Agency. (2023). Health Effects of Exposures to Mercury. EPA. https://www.epa.gov/ mercury/ health-effects-exposures-mercury.
Environmental Protection Agency. (2023). AP-42: Compilation of Air Emissions Factors. EPA. https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors.
Fan, Y., Liu, L. C., Wu, G., & Wei, Y. M. (2006). Analyzing impact factors of CO2 emissions using the STIRPAT model. Environmental Impact Assessment Review, 26(4), 377-395. https://doi.org/10.1016/j.eiar.2005.11.007.
Government of Canada. (2017). Canadian mercury science assessment: summary of key results. GC. https://www. canada. ca/en/environment-climate-change/services/pollutants/mercury-environment/science-assessment-summary-key-results.html
Glodek, A., & Pacyna, J. M. (2009). Mercury emission from coal-fired power plants in Poland. Atmospheric Environment, 43(35), 5668-5673. https://doi.org/10.1016/j.atmosenv.2009.07.041.
Huang, M. H., Chen, W. H., Trinh, M. M., & Chang, M. B. (2023). Mass flows and characteristic of mercury emitted from coal-fired power plant equipped with seawater flue gas desulphurization. Sustainable Environment Research, 33(1), 1-10. https://doi.org/10.1186/s42834-023-00168-9.
Iran Power Generation and Transmission Company (TAVANIR). (2021). Detailed statistics of Iran’s electricity industry (In Persian). Tavanir. https://amar.tavanir.org.ir/
Iran Power Generation and Transmission Company (TAVANIR). (2023). Detailed statistics of Iran’s electricity industry (In Persian). Tavanir. https://amar.tavanir.org.ir/
Kim, J. H., Park, J. M., Lee, S. B., Pudasainee, D., & Seo, Y. C. (2010). Anthropogenic mercury emission inventory with emission factors and total emission in Korea. Atmospheric Environment, 44(23), 2714-2721. https://doi.org/10.1016/j.atmosenv.2010.04.037.
Li, B., & Wang, H. (2021). Effect of flue gas purification facilities of coal-fired power plant on mercury emission. Energy Reports, 7, 190-196. https://doi.org/10.1016/j.egyr.2021.01.094.
Li, L., & Li, Y. (2023). The Spatial Relationship between CO2 Emissions and Economic Growth in the Construction Industry: Based on the Tapio Decoupling Model and STIRPAT Model. Sustainability, 15(1), 528. https://doi.org/10.3390/su15010528.
Liu, K., Wang, S., Wu, Q., Wang, L., Ma, Q., Zhang, L., ... & Hao, J. (2018). A highly resolved mercury emission inventory of Chinese coal-fired power plants. Environmental science & technology, 52(4), 2400-2408. https://doi.org/10.1021/acs.est.7b06209.
Liu, X., Wang, X., & Meng, X. (2023). Carbon Emission Scenario Prediction and Peak Path Selection in China. Energies, 16(5), 2276. https://doi.org/10.3390/en16052276.
Lohwasser, J., & Schaffer, A. (2023). The varying roles of the dimensions of affluence in air pollution: a regional STIRPAT analysis for Germany. Environmental Science and Pollution Research, 30(8), 19737-19748. https://doi.org/10.1007/s11356-022-23519-2.
MacFarlane, S., Fisher, J. A., Horowitz, H. M., & Shah, V. (2022). Two decades of changing anthropogenic mercury emissions in Australia: inventory development, trends, and atmospheric implications. Environmental Science: Processes & Impacts, 24(9), 1474-1493. https://doi.org/10.1039/D2EM00019A.
Masekoameng, K. E., Leaner, J., & Dabrowski, J. (2010). Trends in anthropogenic mercury emissions estimated for South Africa during 2000–2006. Atmospheric Environment, 44(25), 3007-3014. https://doi.org/10.1016/j.atmosenv. 2010.05.006.
Minamata Convention on Mercury. (2021). Minamata Convention on Mercury - Text and Annexes. MCM. https:// mercuryconvention.org/en
Ojaghlou, M., Ugurlu, E., Kadłubek, M., & Thalassinos, E. (2023). Economic Activities and Management Issues for the Environment: An Environmental Kuznets Curve (EKC) and STIRPAT Analysis in Turkey. Resources, 12(5), 57. https://doi.org/10.3390/resources12050057.
Pilar, L., Borovec, K., Szeliga, Z., & Górecki, J. (2021). Mercury emission from three lignite-fired power plants in the Czech Republic. Fuel Processing Technology, 212, 106628. https://doi.org/10.1016/j.fuproc.2020.106628.
Pirrone, N., & Mason, R. (2009). Mercury fate and transport in the global atmosphere. Berlin, Springer.
Romanov, A., Sloss, L., & Jozewicz, W. (2012). Mercury emissions from the coal-fired energy generation sector of the Russian Federation. Energy & fuels, 26(8), 4647-4654. https://doi.org/10.1021/ef300398q.
Skånberg, K., & Svenfelt, Å. (2022). Expanding the IPAT identity to quantify backcasting sustainability scenarios. Futures & Foresight Science, 4(2), 116. https://doi.org/10.1002/ffo2.116.
Si, M., Tarnoczi, T. J., Wiens, B. M., & Du, K. (2019). Development of predictive emissions monitoring system using open source machine learning library–keras: A case study on a cogeneration unit. IEEE Access, 7, 113463-113475. https://doi.org/10.1109/ACCESS.2019.2930555.
Spadaro, J. V., & Rabl, A. (2008). Global health impacts and costs due to mercury emissions. Risk Analysis: An
International Journal, 28(3), 603-613. https://doi.org/10.1111/j.1539-6924.2008.01041.x.
Sun, X., Gingerich, D. B., Azevedo, I. L., & Mauter, M. S. (2019). Trace element mass flow rates from US coal fired power plants. Environmental science & technology, 53(10), 5585-5595. https://doi.org/10.1021/acs.est.9b01039.
Thepanondh, S., & Tunlathorntham, V. (2020). Appropriate scenarios for mercury emission control from coal-fired power plant in Thailand: emissions and ambient concentrations analysis. Heliyon, 6(6), e04197. https:// doi.org/ 10.1016/j.heliyon.2020.e04197.
Thao, P. T. B., Pimonsree, S., Suppoung, K., Bonnet, S., Junpen, A., & Garivait, S. (2021). Development of an anthropogenic atmospheric mercury emissions inventory in Thailand in 2018. Atmospheric Pollution Research, 12(9), 101170. https://doi.org/10.1016/j.apr.2021.101170.
Thio, E., Tan, M., Li, L., Salman, M., Long, X., Sun, H., & Zhu, B. (2021). The estimation of influencing factors for carbon emissions based on EKC hypothesis and STIRPAT model: Evidence from top 10 countries. Environment, Development and Sustainability, 24, 11226–11259. https://doi.org/10.1007/s10668-021-01905-z.
United Nations Environment Programme. (2023). Mercury Inventory Toolkit. UNEP. https://www.unep.org/explore-topics/chemicals-waste/what-we-do/mercury/mercury-inventory-toolkit
Wei, Z., Wei, K., & Liu, J. (2023). Decoupling relationship between carbon emissions and economic development and prediction of carbon emissions in Henan Province: based on Tapio method and STIRPAT model. Environmental Science and Pollution Research, 30(18), 52679-52691. https://doi.org/10.1007/s11356-023-26051-z.
World Bank. (2023). The World Bank Data. WB. https://data.worldbank.org/indicator/SP.POP.TOTL
Wu, Q., Wang, S., Liu, K., Li, G., & Hao, J. (2018). Emission-limit-oriented strategy to control atmospheric mercury emissions in coal-fired power plants toward the implementation of the Minamata Convention. Environmental science & technology, 52(19), 11087-11093.
Wu, Z., Ye, H., Shan, Y., Chen, B., & Li, J. (2020). A city-level inventory for atmospheric mercury emissions from coal combustion in China. Atmospheric environment, 223, 117245. https://doi.org/10.1016/j.atmosenv.2019.117245.
Xu, Y., Zhang, W., Wang, J., Ji, S., Wang, C., & Streets, D. G. (2021). Investigating the spatially heterogeneous impacts of urbanization on city-level industrial SO2 emissions: Evidence from night-time light data in China. Ecological Indicators, 133, 108430. https://doi.org/10.1016/j.ecolind.2021.108430.
Yu, S., Zhang, Q., Hao, J. L., Ma, W., Sun, Y., Wang, X., & Song, Y. (2023). Development of an extended STIRPAT model to assess the driving factors of household carbon dioxide emissions in China. Journal of Environmental Management, 325, 116502. https://doi.org/10.1016/j.jenvman.2022.116502.
Zhang, Y., Song, Z., Huang, S., Zhang, P., Peng, Y., Wu, P., ... & Li, P. (2021). Global health effects of future atmospheric mercury emissions. Nature Communications, 12(1), 3035. https://doi.org/10.1038/s41467-021-23391-7 | ||
آمار تعداد مشاهده مقاله: 334 تعداد دریافت فایل اصل مقاله: 300 |