تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,003 |
تعداد مشاهده مقاله | 125,492,826 |
تعداد دریافت فایل اصل مقاله | 98,752,922 |
بهبود الگوی خیسشدگی خاک در سامانههای آبیاری قطرهای با تاکید بر مدیریت پالسی | ||
تحقیقات آب و خاک ایران | ||
دوره 54، شماره 12، اسفند 1402، صفحه 1885-1911 اصل مقاله (2.01 M) | ||
نوع مقاله: مروری | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.365593.669576 | ||
نویسندگان | ||
ساناز محمدی* 1؛ ایمان حاجی راد2؛ عبدالمجید لیاقت3 | ||
1گروه مهندسی و مدیریت آب دانشکده کشاورزی دانشگاه تربیت مدرس | ||
2دانشجوی دکتری، گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران. | ||
3گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
عمق و عرض پیاز رطوبتی تعیینکننده فاصله بین لترالها و قطرهچکانهای آبیاری و درنتیجه تعداد انها و هزینه نهایی سامانه آبیاری میباشد. بنابراین برای تطبیق هرچه بیشتر الگوی خیسشدگی خاک با الگوی رشد ریشه، پژوهشگران استفاده از روشهای مختلفی همچون تنظیم دور و عمق آبیاری، استفاده از مانع فیزیکی، کاپیلاری و هیدرولیکی و مدیریت پالسی را مورد بررسی قرار دادهاند. اعمال مدیریت پالسی در روش آبیاری قطرهای بهدلیل توانایی بهبود توزیع رطوبت در خاک میتواند جایگزین روش معمول آبیاری پیوسته شود. مطالعات نشان میدهند که آبیاری پالسی با بهبود دسترسی ریشه گیاه به آب، اکسیژن و عناصر غذایی باعث افزایش فعالیت ریشه و توسعه آن میشود. علاوه بر این، آبیاری پالسی از طریق بهبود توزیع رطوبت در خاکهایی با بافت سنگین از تجمع آب در یک نقطه خاص از خاک جلوگیری کرده و باعث کاهش تبخیر آب از خاک میگردد. در خاکهایی با بافت سبک نیز استفاده از مدیریت پالسی میتواند منجربه کاهش نفوذ عمقی به زیر منطقه توسعه ریشه گیاه گردد. آبیاری پالسی از طریق فراهم کردن امکان استفاده از قطرهچکان با نرخ دبی بالا میتواند تأثیر مثبتی بر کاهش گرفتگی قطرهچکانهای آبیاری داشته باشد. نتایج کلی تحقیقات نشان میدهد که آبیاری قطرهای پالسی میتواند بهبود عملکرد محصول و بهرهوری آب را به همراه داشته باشد. هدف از مطالعه حاضر مروری بر تجربیات استفاده از روشهای مختلف مدیریتی برای بهبود الگوی خیسشدگی خاک و ارائه معادلات تجربی برای شبیهسازی الگوی خیسشدگی خاک تحت سامانههای آبیاری قطرهای با تاکید بر جریان پالسی است. | ||
کلیدواژهها | ||
رشد محصول؛ توزیع رطوبت؛ عملکرد؛ گرفتگی قطرهچکان؛ مدیریت آبیاری | ||
عنوان مقاله [English] | ||
Improving the soil wetting pattern in drip irrigation systems with emphasis on pulsed management | ||
نویسندگان [English] | ||
sanaz mohammadi1؛ Iman Hajirad2؛ Abdolmajid Liaghat3 | ||
1Water Management and Engineering Department, Collage of Agriculture, Tarbiat Modares University, Tehran, Iran | ||
2Ph.D. Candidate, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural | ||
3Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
چکیده [English] | ||
The depth and width of the soil wetting pattern determine the spacing between irrigation laterals and the irrigation drippers that influence their numbers and the overall cost of the irrigation system. Therefore, researchers look for solutions to adapt the soil wetting pattern to the pattern of crop root growth as much as possible such as adjusting the irrigation depth and irrigation intervals, utilizing physical, capillary, and hydraulic barriers, as well as pulsed management. Pulsed drip irrigation can replace the usual method of continuous irrigation due to its ability to improve the distribution of soil moisture and consequently crop yield. It also, prevents the accumulation of water in a specific point of the soil and decrease evaporation by improving moisture distribution in the soils with heavy texture and in the soils with a light texture, can lead to a reduction of deep percolation bellow the crop root zone. The results of studies have shown that pulsed drip irrigation can have a positive effect on reducing the clogging of irrigation drippers by providing the possibility of using a dripper with a high flow rate. Therefore, the general results of the research show that the use of pulsed drip irrigation can improve crop yield and water productivity. The purpose of this study is to review the experiences of using different management methods to improve the soil wetting pattern in drip irrigation systems and also provide experimental equations for simulating the soil wetting pattern under drip irrigation systems with emphasis on pulsed management. | ||
کلیدواژهها [English] | ||
Crop Growth, Dripper Clogging, Irrigation Management, Moisture Distribution, Yield | ||
مراجع | ||
Abd-Elhakim, A., Elmeadawy, M., El-Sybaee, I. & Egela, M. (2021). Effect Use of Pulsed Deficit Drip Irrigation for Tomato Crop in Greenhouse powered by solar energy. Misr Journal of Agricultural Engineering, 38(1), 1-14. Abdelraouf, R. E., Azab, A., Tarabye, H. H. H., & Refaie, K. M. (2019). Effect of pulse drip irrigation and organic mulching by rice straw on yield, water productivity and quality of orange under sandy soils conditions. Plant Archives, 19(2), 2613-2621. Abuarab, M. E., El-Mogy, M., & Lotfy, A. (2011). Response of green bean to pulse subsurface trickle irrigation. Misr Society of Agricultural Engineering, 28, 1-17. Almeida, W. F. D., Paz, V. P. D. S., de Jesus, A. P., Silva, J. S. D., Gonçalves, K. S., & Oliveira, A. S. D. (2018). Yield of green beans subjected to continuous and pulse drip irrigation with saline water. Revista Brasileira de Engenharia Agrícola e Ambiental, 22, 476-481. Al-Naeem, M. A. (2008). Use of pulse trickles to reduce clogging problems in trickle irrigation system in Saudi Arabia. Pakistan Journal of Biological Sciences: PJBS, 11(1), 68-73. Al-Ogaidi, A. A., Wayayok, A., Rowshon, M. K., & Abdullah, A. F. (2016). Wetting patterns estimation under drip irrigation systems using an enhanced empirical model. Agricultural Water Management, 176, 203-213. Amin, M. S., & Ekhmaj, A. I. (2006, September). DIPAC-drip irrigation water distribution pattern calculator. In 7th International micro irrigation congress (Vol. 1016). Arriero, S. S., Almeida, W. F. D., Paz, V. P. D. S., & Damasceno, L. F. (2020). Yield of eggplant using low quality water and pulse drip irrigation. Revista Brasileira de Engenharia Agrícola e Ambiental, 24, 822-826. Awady, M. N., Wassif, M. A., Abd-El-Salam, M. F., & El-Farrah, M. A. (2008, March). Moisture distribution from subsurface dripping using saline water in sandy soil. In The 15th Annual Conference of the Misr Society of Ag Eng. Misr Society of Agricultural Engineering (pp. 477-496). Bakeer, G., El-Ebabi, F. & El-Saidi, M. (2009). Effect of pulse drip irrigation on yield and water use efficiency of potato crop under organic agriculture in sandy soils. Misr Journal of Agriculture Engineering, 26: 736-765. Barth, H. K., & Lamm, E. R. (1995). Resource conservation and preservation through a new subsurface irrigation system. Microirrigation for changing world: Conserving resources/Preserving the environment. Proceed Fifth Intern Microirrigation Cong. Orlando, Florida, 168-174. Bordovsky, J. P., & Porter, D. (2003). Cotton response to pre-plant irrigation level and irrigation capacity using spray, LEPA, and subsurface drip irrigation. In 2003 ASAE Annual Meeting (p. 1). American Society of Agricultural and Biological Engineers. Bresler, E. (1977) Trickle-drip irrigation: principles and application to soil-water management. Advances in Agronomy, 29:343–393. Bristow, K. L., Cote, C. M., Thorburn, P. J., & Cook, F. J. (2000). Soil wetting and solute transport in trickle irrigation systems. In 6th International Micro-irrigation Congress (Micro 2000), Cape Town, South Africa, 22-27 October 2000 (pp. 1-9). International Commission on Irrigation and Drainage (ICID). Colaizzi, P.D., Schneider, A.D., Evett, S.R. and Howell, T.A. (2004). Comparison of SDILEPA, and spray irrigation performance for grain sorghum. Trans. ASAE, 47: 1477–1492. Cook, F. J., Thorburn, P. J., Fitch, P., & Bristow, K. L. (2003). WetUp: a software tool to display approximate wetting patterns from drippers. Irrigation Science, 22(3-4), 129-134. Cote, C. M., Bristow, K. L., Charlesworth, P. B., Cook, F. J., & Thorburn, P. J. (2003). Analysis of soil wetting and solute transport in subsurface trickle irrigation. Irrigation Science, 22(3-4), 143-156. Eid, A. R., Bakry, B. A. & Taha, M. H. (2013). Effect of pulse drip irrigation and mulching systems on yield, quality traits and irrigation water use efficiency of soybean under sandy soil conditions. Agricultural Sciences, 4: 249-261. Elawady, M. N., Abd El-Salam, M. F., Elnawawy, M. M., & El-Farrah, M. A. (2003, October). Surface and subsurface irrigation effects on Spinach and sorghum. In The 4th Annual Conference of Misr Society of Agricultural Engineers (pp. 118-130). Elmaloglou, S., & Diamantopoulos, E. (2007). Wetting front advance patterns and water losses by deep percolation under the root zone as influenced by pulsed drip irrigation. Agricultural water management, 90(1-2), 160-163. Elmaloglou, S., & Diamantopoulos, E. (2009). Effects of hysteresis on redistribution of soil moisture and deep percolation at continuous and pulse drip irrigation. Agricultural water management, 96(3), 533-538. Elnesr, M. (2012). Subsurface drip irrigation development and modeling of wetting pattern. Lap Lambert Academic. Elnesr, M. N., & Alazba, A. A. (2015). The effects of three techniques that change the wetting patterns over subsurface drip-irrigated potatoes. Spanish journal of agricultural research, 13(3), e1204-e1204. Elnesr, M. N., Alazba, A. A., & Šimůnek, J. (2014). HYDRUS simulations of the effects of dual-drip subsurface irrigation and a physical barrier on water movement and solute transport in soils. Irrigation science, 32, 111-125. Gardenas, A. I., Hopmans, J. W., Hanson, B. R., & Simunek, J. (2005). Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation. Agricultural water management, 74(3), 219-242. Gendron, L., Létourneau, G., Cormier, J., Depardieu, C., Boily, C., Levallois, R., & Caron, J. (2018). Using pulsed water applications and automation technology to improve irrigation practices in strawberry production. HortTechnology, 28(5), 642-650. Goyal, M. R. (2015). Research Advances in Sustainable Micro Irrigation, 1st edn. Oakville: Apple Academic Press, Canada. Hajirad, I., Mirlatifi, S. M., Dehghanisanij, H., & Mohammadi, S. (2021a). Determining yield response factor (ky) of silage maize under different irrigation levels of pulsed and continuous irrigation management. Central Asian Journal of Plant Science Innovation, 1(4), 214-220. Hajirad, I., Mirlatifi, S. M., Dehghanisanij, H., & mohammadi, S. (2021b). Estimating Silage Maize Crop Coefficient and Water Stress Coefficient under Different Irrigation Levels using Soil Water Balance Method (Case Study: Varamin Region). Iranian Journal of Soil and Water Research, 52(9), 2359-2371. doi: 10.22059/ijswr.2021.326719.669013. Hajirad, I., Mirlatifi, S. M., Dehghanisanij, H., & mohammadi, S. (2021c). Determining Actual Evapotranspiration of Silage Maize using Soil Water Balance Method under Different Drip Irrigation Levels with Pulsed and Continuous Management (Case Study: Varamin Region). Iranian Journal of Soil and Water Research, 52(7), 1869-1880. doi: 10.22059/ijswr.2021.322095.668940 Hajirad, I., Mirlatifi, S. M., DehghaniSanij, H., & Mohammadi, S. (2021d). Effects of Different Pulsed Drip Irrigation Levels on the Yield and Water Productivity of Silage Maize. Water and Irrigation Management, 11(2), 87-98. (In Persian) Hajirad, I., Mirlatifi, S. M., Dehaghani Sanich, H., & Mohammadi, S. (2021e). Investigating the effect of deficit irrigation on yield and water productivity of silage maize under pulsed and continuous drip irrigation management. Iranian Water Researches Journal, 15(3), 15-23. Hajirad, I., Mirlatifi, S. M., Dehghanisanij, H., & Mohammadi, S. (2022). The Effects of Two Irrigation Management on Growth Indices of Silage Maize in arid and semi-arid climates. Iranian Journal of Irrigation & Drainage, 15(6), 1444-1458. (In Persian) Hajirad, I., Mirlatifi, S. M., Dehghanisanij, H., & Mohammadi, S. (2019). Soil Wetting Pattern of Drip Irrigated Maize as influenced by Deficit Irrigation and Discharge Rate. 1th International and 4th National Congress on Iranian Irrigation and Drainage (INCIID 2019). Hajirad, I., Mohammadi, S., & Dehghanisanij, H. (2023). Determining the critical points of a basin from the point of view of water productivity and water consumption using the wapor database. Environmental Sciences Proceedings, 25(1), 86. Henggeler, J. (1995). A history of drip-irrigated cotton, in Texas Micro-irrigation for a Changing World: Conserving Resources/Preserving the Environment. Proc. Fifth International Micro-irrigation Congress, 669–674 Howell, T.A., Schneider, A. & Evett, S. (1997). Subsurface and surface micro-irrigation of corn—southern high plains. Trans. ASAE, 40: 635–641. Hozayn, M., El-Monem, A. A. A., Abdelraouf, R. E., & Abdalla, M. M. (2013). Do magnetic water affect water use efficiency, quality and yield of sugar beet (Beta vulgaris L.) plant under arid regions conditions?. Journal of Agronomy, 12(1), 1-10. Huang, L., Yang, P., Ren, S., & Cui, H. (2018). Effects of continuous and pulse irrigation with different nitrogen applications on soil moisture, nitrogen transport and accumulation in root systems. International Journal of Agricultural and Biological Engineering, 11(5), 139-149. Ismail, S. M., El-abedin, T. Z., Wassif, A., & El-Nesr, M. N. (2006). Drip irrigation systems in sandy soil using physical and hydraulic barriers. Misr J. Ag. Eng, 23(4), 1021-1034. Ismail, S., Zien-El-Abedin, T., Omara, A. A. & Abdel-Tawab, E. (2014). Modeling the soil wetting pattern under pulse and continus drip irrigation. American-Eurasian Journal of Agricultural & Environmental Sciences, 14(9): 913-922. Ityel, E., Lazarovitch, N., Silberbush, M., & Ben-Gal, A. (2011). An artificial capillary barrier to improve root-zone conditions for horticultural crops: response of pepper, lettuce, melon, and tomato. Irrigation Science, 30: 293-301. Ityel, E., Lazarovitch, N., Silberbush, M., & Ben-Gal, A. (2010). An artificial capillary barrier to improve root zone conditions for horticultural crops: physical effects on water content. Irrigation science, 29: 171-180. Jackson, R. C., & Kay, M. G. (1987). Use of pulse irrigation for reducing clogging problems in trickle emitters. Journal of Agricultural Engineering Research, 37(3-4), 223-227. Kampf, M., Holfelder, T., & Montenegro, H. (1998). Inspection and numerical simulations of flow processes in capillary barrier cover systems. In Advances in hydro-science and engineering, proceedings of the 3rd international conference on hydro-science and-engineering. Brandenburg University, Cottbus. Kandelous, M. M., & Šimůnek, J. (2010). Comparison of numerical, analytical, and empirical models to estimate wetting patterns for surface and subsurface drip irrigation. Irrigation Science, 28, 435-444. Kandelous, M. M., Liaghat, A., & Abbasi, F. (2008). Estimation of soil wetting pattern in subsurface drip irrigation using dimension alanalysis method. Journal Agricalture Science. 39(2):371–378. (In Persian) Kandelous, M. M., Šimůnek, J., Van Genuchten, M. T., & Malek, K. (2011). Soil water content distributions between two emitters of a subsurface drip irrigation system. Soil Science Society of America Journal, 75(2), 488-497. Karimi, B., & Karimi, N. (2020). Simulation of Wetted Area of Moisture Bulb in Pulsed Drip Irrigation. Water and Soil, 34(2), 349-364. doi: 10.22067/jsw.v34i2.82228. (In Persian) Karimi, B., & Karimi, N. (2022). Evaluation of moisture advance front pattern in subsurface drip irrigation with continuous and pulsed flow. Water Resources Engineering, 14(51), 21-38. doi: 10.30495/wej.2022.20462.2120. (In Persian) Karimi, B., Sohrabi, T., Mirzaei, F., & Ababaei, B. (2015). Developing Equations to Predict the Pattern of Soils Moisture Redistribution in Surface and Subsurface Drip Irrigation Systems Using Dimension Analysis. Journal of Water and Soil Conservation, 21(6), 223-237. (In Persian) Karmeli, D., & Peri, G. (1974). Basic principles of pulse irrigation. Journal of the Irrigation and Drainage Division, 100(3), 309-319. Keller, J., & Bliesner, R. D. (1990). Sprinkle and trickle irrigation (Vol. 3, No. 5, pp. 86-96). New York: Van Nostrand Reinhold. Kim, D. H., Kim, J. S., Kwon, S. H., Park, J. M., & Choi, W. S. (2021). Simulation of Soil Water Movement in Upland Soils Under Pulse Irrigation using HYDRUS-2D. Journal of Biosystems Engineering, 46(4), 508-516. Liu, X.F., Wan, S.Q., Feng, L., Jiang, S.F., Kang, Y.H. & Liu, S.P. (2015). Response of potato yield and irrigation water use efficiency under subsurface drip irrigation at various lateral depths. Journal of Irrigation and Drainage. 34: 63–66. Lubana, P. P. S. & Narda, N. K. (2001). Modelling soil water dynamics under trickle emitters-a review. Journal of Agriculture Engineering Research, 78(3): 217–232. Lubana, P. P. S., Narda, N. K. & Brown, L. C. (2002). Application of a hemispherical model to predict radius of wetted soil volume under point source emitters for trickle irrigated tomatoes in Punjab state. Trans ASABE, 32: 243–257. Madane, D. A., Mane, M. S., Kadam, U. S., Thokal, R. T., Patil, S. T., Nandgude, S. B., & Dhekale, J. S. (2018). Effect of Pulse Irrigation (Drip) Influencing Different Irrigation Levels on Growth and Yield Parameters of White Onion (Allium cepa L.). Advanced Agricultural Research & Technology Journal, 2(2). Madane, D. A., Maneb, M. S., Kadamb, U. S., & Thokalc, R. T. (2018). Effect of pulse irrigation (drip) through different irrigation levels on moisture distribution pattern and yield of white onion (Alium cepa L.). Plant Archives, 18(1), 1065-1073. Malek, K., & Peters, R. T. (2011). Wetting pattern models for drip irrigation: new empirical model. Journal of Irrigation and Drainage Engineering, 137(8), 530-536. Mirzaei, F., & Biegi, A. M. (2020). Modeling Distribution of Potassium in the Soil in Under Drip Irrigation. J Soil Water Sci, 4(1), 122-131. Mirzaei, F., Alkasir, Z., & moini, A. (2020). Modeling for Estimating Soil Moisture Dimensions in Drip Irrigation in Layer Soil Using Dimensional Analysis Method. Iranian Journal of Irrigation & Drainage, 14(2), 570-578. (In Persian) Mohammad beigi, A., Mirzaei, F., & Ashraf, N. (2016). Evaluation and comparing of redistribution of moisture in drip irrigation by pulsed flow and continuous flow. Iranian Journal of Soil and Water Research, 47(3), 467-473. doi: 10.22059/ijswr.2016.59317. (In Persian) Mohammadbeigi, A., Mirzaei. F., & Ashraf. N. (2017). Simulation of soil moisture distribution under drip irrigation pulsed and continuous in dimensional analysis method. Journal of Water and Soil Conservation, 23(6), 163-180. doi: 10.22069/jwfst.2017.9762.2412. (In Persian) Mohammadi S., Mirlatifi, S. M., Dehghanisanij, H., Hajirad, I. (2019). Effects of Pulsed Drip Irrigation on Soil Moisture Distribution under water stress Conditions. 1th International and 4th National Congress on Iranian Irrigation and Drainage (INCIID 2019). Mohammadi, S., Mirlatifi, S. M., Homaee, M., Dehghanisanij, H., & hajirad, I. (2021a). Determination of Silage Maize Crop Coefficient under Pulsed Drip Irrigation using Water Balance Method in Varamin. Iranian Journal of Soil and Water Research, 52(5), 1223-1237. doi: 10.22059/ijswr.2021.316676.668865. Mohammadi, S., Mirlatifi, S. M., Dehghanisanij, H., hajirad, I., & Homaee, M. (2021b). Modeling Soil Wetting Patterns under Pulsed Drip Irrigation by Dimensional Analysis Method and Comparison with HYDRUS-2D Numerical Model. Iranian Journal of Soil and Water Research, 52(7), 1903-1913. doi: 10.22059/ijswr.2021.322796.668947. Mohammadi, S., Mirlatifi, S. M., Dehghanisanij, H., & Homaee, M. (2021c). Effect of Pulsed Management in Drip Irrigation on Yield, Yield Components and Water Productivity of Silage Maize. Iranian Journal of Soil and Water Research, 51(12), 3135-3145. (In Persian) Mohammadi, S., Mirlatifi, S. M., Dehghanisanij, H., hajirad, I., & homaee, M. (2022). Simulation and investigation of Soil Moisture Distribution and Wetting Patterns in a Clay Soil under Pulsed Drip Irrigation. Iranian Water Researches Journal, 16(2), -. Doi: 10.22034/iwrj.2022.13788.2385. (In Persian) Mohammadi, S., Mirlatifi, S. M., Homaee, M., Dehghanisanij, H., & Hajirad, I. (2023). Evaluation of silage maize production under pulsed drip irrigation in a semi-arid region. Irrigation Science, 1-15. Moncef, H., and Khemaies, Z. (2016). An analytical approach to predict the moistened bulb volume beneath a surface point source. Agricultural Water Management, 166, 123-129. Moncef, H., Hedi, D., Jelloul, B., & Mohamed, M. (2002). Approach for predicting the wetting front depth beneath a surface point source: theory and numerical aspect. Irrigation and Drainage: The Journal of the International Commission on Irrigation and Drainage, 51(4), 347-360. Naglič, B., Kechavarzi, C., Coulon, F., & Pintar, M. (2014). Numerical investigation of the influence of texture, surface drip emitter discharge rate and initial soil moisture condition on wetting pattern size. Irrigation science, 32, 421-436. Pelletier, G., & Tan, C. S. (1993). Determining irrigation wetting patterns using time domain reflectometry. HortScience, 28(4), 338-339. Phene, C. J., Davis, K. R., Hutmacher, R. B., & McCormick, R. L. (1986, August). Advantages of subsurface irrigation for processing tomatoes. In II International Symposium on Processing Tomatoes, XXII IHC 200 (pp. 101-114). Phogat, V., Skewes, M. A., Mahadevan, M., & Cox, J. W. (2013). Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions. Agricultural Water Management, 118, 1-1. Rank, P. H. (2019). Development and evaluation of an automated pulse irrigation system (Doctoral dissertation, Department of Irrigation and Drainage Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur). Schwartzman, M., & Zur, B. (1986). Emitter spacing and geometry of wetted soil volume. Journal of Irrigation and Drainage Engineering, 112(3), 242-253. Singh, D. K., Rajput, T. B. S., Sikarwar, H. S., Sahoo, R. N., & Ahmad, T. (2006). Simulation of soil wetting pattern with subsurface drip irrigation from line source. Agricultural water management, 83(1-2), 130-134. Skaggs, T. H., Trout, T. J., Šimůnek, J., & Shouse, P. J. (2004). Comparison of HYDRUS-2D simulations of drip irrigation with experimental observations. Journal of irrigation and drainage engineering, 130(4), 304-310. Stormont, J. C., & Morris, C. E. (1998). Method to estimate water storage capacity of capillary barriers. Journal of Geotechnical and Geoenvironmental Engineering, 124(4), 297-302. Subbaiah, R. (2013). A review of models for predicting soil water dynamics during trickle irrigation. Irrigation Science, 31(3), 225-258. Thorburn, P. J., Cook, F. J., & Bristow, K. L. (2003). Soil-dependent wetting from trickle emitters: implications for system design and management. Irrigation Science, 22(3-4), 121-127. Vyrlas, P., and Sakellariou, M. (2005). Intermittent water application through surface and subsurface drip irrigation. ASAE Annual International Meeting, Tampa, FL, USA. Available in http:// goo.gl/3Gn7xb. Welsh, D. F., Kreuter, U. P., Byles, J. D., & Lamm, E. R. (1995, April). Enhancing subsurface drip irrigation through vector flow. In Proceedings of the 5th International Microirrigation Congress, Orlando, FA, ASAE (pp. 2-6). Zamora, V. R. O., da Silva, M. M., Santos Júnior, J. A., da Silva, G. F., Menezes, D., & de Almeida, C. D. G. C. (2021). Assessing the productivity of coriander under different irrigation depths and fertilizers applied with continuous and pulsed drip systems. Water Supply, 21(5), 2099-2108. | ||
آمار تعداد مشاهده مقاله: 361 تعداد دریافت فایل اصل مقاله: 358 |