
تعداد نشریات | 163 |
تعداد شمارهها | 6,825 |
تعداد مقالات | 73,610 |
تعداد مشاهده مقاله | 134,893,087 |
تعداد دریافت فایل اصل مقاله | 105,296,684 |
The Effect of Some Nano Plant Extract on Bacteria Producing Biogenic Amines Isolated From Minced Meat | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 4، دوره 18، شماره 4، دی 2024، صفحه 501-516 اصل مقاله (3.37 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.18.4.1005428 | ||
نویسندگان | ||
Amany Omar Selim* 1؛ Marwa Magdy Abdel Salam2؛ Rasha Nagiub Abdallah Hassan2؛ Gehan Elsaeid Mustafa3؛ Zeinab Abdelrahman Mahdy1 | ||
1Department of Bacteriology, Benha Provincial Laboratory, Agriculture Research Center, Animal Health Research Institue, Cairo, Egypt. | ||
2Department of Food Hygiene, Benha Provincial Laboratory, Agriculture Research Center, Animal Health Research Institute, Cairo, Egypt. | ||
3Department of Biochemistry, Benha Provincial Laboratory, Agriculture Research Center, Animal Health Research Institute, Cairo, Egypt. | ||
چکیده | ||
Background: Biogenic amines are the end products of bacterial decarboxylation of amino acids which occur as a result of bacterial contamination. Those may cause a series of problems for human health such as allergic reactions, itching, breathing difficulties, fever and hypertension. Objectives: This study aimed to isolate different bacteria that can produce decarboxylase enzymes and trail to control it by using garlic, onion and ginger nano-emulsions. Methods: Isolation and identification of some bacteria producing decarboxylase enzymes from minced meat, preparation of garlic, ginger and onion nano-emulsions (60%) and investigating their cytotoxicity by sulforhodamine B (SRB) assay. Then, the antibacterial effect of the prepared nano-emulsions against the isolated bacteria was explored by determination of their minimum inhibitory concentrations (MICs) and measuring biogenic amines levels by high performance liquid chromatography (HPLC). Results: The most common bacteria isolated from samples were Salmonella species “Salmonella Typhimurium1, 4{5},12: i: 1.2 and Salmonella arizonae”, Escherichia coli “serotype O44: K74 and O125: K70”, Klebseilla pneumonia, Enterobacter spp, Staphylococcus aureus, Aeromonas hydrophilia, Proteus mirabilis, Pasteurella multocida and Lactobacillus species. The biogenic amines detected on positive samples were putrescine, cadaverine, spermidine, spermine, putrescine, B-phenyl ethyl amine, histamine and tyramine. The sizes of the ginger oil nanoemulsion 60%, garlic oil nanoemulsion 60% and onion oil nanoemulsion 60% were (222.6±2.22 nm, 420.7±36.95 nm and 202.9±2.1 nm) respectively, indicating that they were safe and stable. The antibacterial effect of the used nano emulsions showed that Salmonella spp, E. coli and S. aureus were the most sensitive strains while K. pneumonia and Enterobacter spp. were the most resistant ones. The level of the detected biogenic amines were reduced greatly after addition the oil nanoemulsions 7.5% to examined samples. Conclusion: Using of plant extract as ginger, garlic and onion nanoemulsions oils as antibacterial agents and for reduction of biogenic amines was more effective. | ||
کلیدواژهها | ||
Biogenic amines؛ Minced meat؛ High performance liquid chromatography (HPLC)؛ Natural nano emulsions؛ Bacteria producing biogenic amines | ||
اصل مقاله | ||
Introduction
Antibacterial effects of (ginger, garlic and onion) nano-emulsions
Reagents
In which the IC50>60% for onion, garlic and ginger oil nano-emulsions as shown in (Figures 1, 2 and 3).
The results recorded in Table 7 and Figure 7 detected the level of BAs in minced meat samples after treatment with 7.5% with onion oil nano-emulsion, In which the level of biogenic amine markedly decrease in the treated samples than the untreated ones, similarly results detected by Majcherczyk and Surówka (2019), that addition of onion caused a reduction in the total biogenic-amine content when compared with the control sample without an additive.
A Eldaly, E., Mahmoud, F. A., & Abobakr, H. M. (2018). Preservative effect of chitosan coating on shelf life and sensory properties of chicken fillets during chilled storage. Journal of Nutrition and Food Security, 3(3), 139-148. [Link] AL Badawi, M. H., Waly, N. E., Eid, M. M., & Soliman, N. A. (2022). Histopathological impact of ginger loaded nanoparticle versus ginger extract as a novel therapy of experimentally induced acute ulcerative colitis. Egyptian Journal of Histology, 45(2), 442-456. [DOI:10.21608/EJH.2021.68124.1448] Algahtani, F. D., Morshdy, A. E., Hussein, M. A., Abouelkheir, E. S., Adeboye, A., & Valentine, A., et al. (2020). Biogenic amines and aflatoxins in some imported meat products: Incidence, occurrence, and public health impacts. Journal of Food Quality, 2020(1), 8718179. [DOI:10.1155/2020/8718179] Ayesh, A. M., Ibraheim, M. N., El-Hakim, A. E., & Mostafa, E. A. H. (2012). Exploring the contamination level by biogenic amines in fish samples collected from markets in Thuel-Saudi Arabia. African Journal of Microbiology Research, 6(6), 1158-1164. [DOI:10.5897/AJMR11.1298] Balamatsia, C. C., Paleologos, E. K., Kontominas, M. G., & Savvaidis, I. N. (2006). Correlation between microbial flora, sensory changes and biogenic amines formation in fresh chicken meat stored aerobically or under modified atmosphere packaging at 4 °C: Possible role of biogenic amines as spoilage indicators. Antonie van Leeuwenhoek, 89(1), 9–17. [DOI:10.1007/s10482-005-9003- 4] [PMID] Bermúdez, R., Lorenzo, J. M., Fonseca, S., Franco, I., & Carballo, J. (2012). Strains of Staphylococcus and Bacillus isolated from traditional sausages as producers of biogenic amines. Frontiers in Microbiology, 3, [DOI:10.3389/fmicb.2012.00151] [PMID] [PMCID] Brashears, M. M., & Chaves, B. D. (2017). The diversity of beef safety: A global reason to strengthen our current systems. Meat Science, 132, 59–71. [DOI:10.1016/j.meatsci.2017.03.015] [PMID] Carpenter, J., & Saharan, V. K. (2017). Ultrasonic assisted formation and stability of mustard oil in water nanoemulsion: Effect of process parameters and their optimization. Ultrasonics Sonochemistry, 35(Pt A), 422–430. [DOI:10.1016/j. ultsonch.2016.10.021.] [PMID] Doeun, D., Davaatseren, M., & Chung, M. S. (2017). Biogenic amines in foods. Food Science and Biotechnology, 26(6), 1463–1474. [DOI:10.1007/s10068-017-0239-3] [PMID] [PMCID] Donsì, F., & Ferrari, G. (2016). Essential oil nanoemulsions as antimicrobial agents in food. Journal of Biotechnology, 233, 106–120. [DOI:10.1016/j. jbiotec.2016.07.005] [PMID] Ekici, K., & Omer, A. K. (2020). Biogenic amines formation and their importance in fermented foods. BIO Web of Conferences, 17, [DOI:10.1051/bioconf/20201700232] Erdag, D., Merhan, O., & Yildiz, B. (2019). Biochemical and pharmacological properties of biogenic amines. In: C. Proestos (Ed), Biogenic Amines (pp. 1-14). London: IntechOpen; 2019. [DOI:10.5772/intechopen.81569] Grimont, P. A., & Weill, F. X. (2007). Antigenic formulae of the salmonella serovars, (9th ed.). Geneva: WHO. [Link] Gul, O., Saricaoglu, F. T., Besir, A., Atalar, I., & Yazici, F. (2018). Effect of ultrasound treatment on the properties of nano-emulsion films obtained from hazelnut meal protein and clove essential oil. Ultrasonics Sonochemistry, 41, 466–474. [DOI:10.1016/j.ultsonch.2017.10.011] [PMID] Gurumayum, S. (2015). Invitro Antimicrobial Activity And Preliminary Phytochemical Screening Of Methanol, Chloroform And Hot Water Extracts Of Ginger (Zingiber Officinale). Asian Journal of Pharmaceutical and Clinical Research, (8), 176-180. [Link] Hassan, W. H., Ibrahim, A. M. K., Shany, S. A. S., & Salam, H. S. H. (2020). Virulence and resistance determinants in Pseudomonas aeruginosa isolated from pericarditis in diseased broiler chickens in Egypt. Journal of Advanced Veterinary and Animal Research, 7(3), 452–463. [DOI:10.5455/javar.2020.g441] [PMID] [PMCID] Hassan, K. A. M., & Mujtaba, A. (2019). Antibacterial efficacy of garlic oil nano-emulsion. AIMS Agriculture and Food, 4(1), 194-205. [DOI:10.3934/agrfood.2019.1.194] Hernández-Jover, T., Izquierdo-Pulido, M., Veciana-Nogués, M. T. & Vidal-Carou, M. C. (1997). Biogenic amine sources in cooked cured shoulder pork. Journal of Agricultural and Food Chemistry, 44(10), 3097-3101. [DOI:10.1021/jf960250s] Jaguey-Hernández, Y., Aguilar-Arteaga, K., Ojeda-Ramirez, D., Añorve-Morga, J., González-Olivares, L. G., & Castañeda-Ovando, A. (2021). Biogenic amines levels in food processing: Efforts for their control in foodstuffs. Food Research International (Ottawa, Ont.), 144, [DOI:10.1016/j.foodres.2021.110341] [PMID] Jairath, G., Singh, P. K., Dabur, R. S., Rani, M., & Chaudhari, M. (2015). Biogenic amines in meat and meat products and its public health significance: A review. Journal of Food Science and Technology, 52, 6835-6846. [Link] Jastrzębska, A., Kowalska, S., & Szłyk, E. (2016). Studies of levels of biogenic amines in meat samples in relation to the content of additives. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 33(1), 27–40. [DOI:10.1080/19440049.2015.1111525] [PMID] Kabrah, M. A. M., Faidah, H. S., Ashshi, A. M., & Turkistani, M. S. A. (2016). Antibacterial effect of onion. Scholars Journal of Applied Medical Sciences, 4(11D), 4128-4133. [Link] Kalhotka, L., Manga, I., Přichystalová, J., Hůlová, M., Vyletělová, M. & Šustová, K. (2012). Decarboxylase activity test of the genus Enterococcus isolated from goat milk and cheese. Acta Veterinaria Brno, 81, 145-151; [DOI:10.2754/avb201281020145] Khan, A. U. R., Nadeem, M., Bhutto, M. A., Yu, F., Xie, X., & El-Hamshary, H., et al. (2019). Physico-chemical and biological evaluation of PLCL/SF nanofibers loaded with oregano essential oil. Pharmaceutics, 11(8), 386. [DOI:10.3390/ pharmaceutics11080386] [PMID] [PMCID] Kongkiattikajorn, J. (2015). Effect of ginger extract to inhibit biogenic amines accumulation during nham fermentation. Journal of Food Chemistry and Nanotechnology, 1(1), 15-19. [DOI:10.17756/jfcn.2015-003] Kowalska-Krochmal, B., & Dudek-Wicher, R. (2021). The minimum inhibitory concentration of antibiotics: Methods, interpretation and clinical relevance. Pathogens, 10(2), 165. [DOI:10.3390/pathogens10020165] [PMID] [PMCID] Li, Y., Yu, Z., Zhu, Y., & Cao, Z. (2020). Selection of nitrite-degrading and biogenic amine-degrading strains and its involved genes. Food Quality and Safety, 4(4), 225-235. [DOI:10.1093/fqsafe/fyaa027] Liu, M., Pan, Y., Feng, M., Guo, W., Fan, X., & Feng, L., et al. (2022). Garlic essential oil in water nanoemulsion prepared by high-power ultrasound: Properties, stability and its antibacterial mechanism against MRSA isolated from pork. Ultrasonics Sonochemistry, 90, [DOI:10.1016/j.ultsonch.2022.106201] [PMID] [PMCID] Lu, S., Ji, H., Wang, Q., Li, B., Li, K., & Xu, C., et al. (2015). The effects of starter cultures and plant extracts on the biogenic amine accumulation in traditional Chinese smoked horsemeat sausages. Food Control, 50, 869-875. [DOI:10.1016/j.foodcont.2014.08.015] Ma, Q., Davidson, P. M., Critzer, F., & Zhong, Q. (2016). Antimicrobial activities of lauric arginate and cinnamon oil combination against foodborne pathogens: Improvement by ethylenediaminetetraacetate and possible mechanisms. LWT - Food Science and Technology, 72, 9-18. [DOI:10.1016/j.lwt.2016.04.021] Mah, J. H., Kim, Y. J., & Wang, H. J. (2009). Inhibitory effects of garlic and other spices on biogenic amine production in Myeolchi-jeot, Korean salted and fermented anchovy product. Food Control, 20(5), 449-454. [DOI:10.1016/j.foodcont.2008.07.006] Mahmoud, A. (2019). Effect of lettuce, marjoram and cumin essential oils on the quality and shelf life of minced meat during refrigerated storage. Zagazig Veterinary Journal, 47(3), 288-297. [DOI:10.21608/zvjz.2019.13680.1047] Majcherczyk, J., & Surówka, K. (2019). Effects of onion or caraway on the formation of biogenic amines during sauerkraut fermentation and refrigerated storage. Food Chemistry, 298, [DOI:10.1016/j.foodchem.2019.125083] [PMID] Markey, B., Leonard, F., Archambault, M., Cullinane, A., & Maguire, D. (2013). Clinical veterinary microbiology. Amsterdam: Elsevier Health Sciences. [Link] Mietz, J. L., & Karmas, E. (1978). Polyamine and histamine content of rock fish, salamon, lobster and shrimp as an indicator of decomposition. Journal of Association of Official Analytical Chemists, 61(1), 139-145. [DOI:10.1093/jaoac/61.1.139] Ningsih, I. Y., Faradisa, H., Cahyani, M. D., Rosyidi, V. A., & Hidayat, M. A. (2020). The formulation of ginger oil nanoemulsions of three varieties of ginger (Zingiber officinale Rosc.) as natural antioxidant. Journal of Research in Pharmacy, 24(6), 914-924. [DOI:10.35333/jrp.2020.251] Pabast, M., Shariatifar, N., Beikzadeh, S., & Jahed, G. (2018). Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control, 91, 185-192. [DOI:10.1016/j.foodcont.2018.03.047] Papageorgiou, M., Lambropoulou, D., Morrison, C., Kłodzińska, E., Namieśnik, J., & Płotka-Wasylka, J. (2018). Literature update of analytical methods for biogenic amines determination in food and beverages. TrAC Trends in Analytical Chemistry, 98, 128-42. [DOI:10.1016/j.trac.2017.11.001] Paul, D.V., George, M.G., Dorothy, J., No-el, R.K., Wolfgang, L., Fred, A.R., Karl-Heinz, S. & William, B.W. (2009). “Bergey’s Manual of Systematic Bacteriolo-gy”. New York: Springer. [DOI: 10.1007/978-0-387-21609-6] Pircher, A., Bauer, F., & Paulsen, P. (2007). Formation of cadaverine, histamine, putrescine and tyramine by bacteria isolated from meat, fermented sausages and cheeses. European Food Research and Technology, 226, 225-231. [DOI:10.1007/s00217-006-0530-7] Rao, J., & McClements, D. J. (2011). Formation of flavor oil microemulsion, nanoemulsions and emulsion influence of composition and preparation method. Journal of Agricultural and Food Chemistry, 59(9), 5026–5035. [DOI:10.1021/jf200094m] [PMID] Ruiz-Capillas, C., Jiménez Colmenero, F., Carrascosa, A. V., & Muñoz, R. (2007). Biogenic amine production in Spanish dry-cured “chorizo” sausage treated with high-pressure and kept in chilled storage. Meat Science, 77(3), 365–371. [DOI:10.1016/j.meatsci.2007.03.027] [PMID] Ruiz-Jiménez, J., & Luque de Castro, M. D. (2006). Pervaporation as interface between solid samples and capillary electrophoresis. Determination of biogenic amines in food. Journal of Chromatography. A, 1110(1-2), 245–253. [DOI:10.1016/j.chroma.2006.01.081] [PMID] Saad, S. M., Shaltout, F. A., Abou Elroos, N. A., & El-nahas, S. B. (2019). Antimicrobial effect of some essential oils on some pathogenic bacteria in minced meat. Journal of Food Science and Nutrition Research, 2, 013-021. [DOI:10.26502/jfsnr.2642-1100005] Saleh, E. A., Morshdy, A. E. M., Hafez, A. E., Hussein, M. A., Elewa, E. S. & Mahmoud, A. F. A. (2017). Effect of pomegranate peel powder on the hygienic quality of beef sausage. Journal of Microbiology, Biotechnology and Food Sciences, 6(6), 1300-1304. [Link] Salfinger, Y., & Lou Tortorello, M. (2001). Compendium of methods for the microbiological examination of Foods. Washington D.C., USA: American Public Health Association. [Link] Schirone, M., Esposito, L., D'Onofrio, F., Visciano, P., Martuscelli, M., & Mastrocola, D., etal. (2022). Biogenic amines in meat and meat products: A review of the science and future perspectives. Foods, 11(6), 788. [DOI:10.3390/ foods11060788] [PMID] [PMCID] Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., & Vistica, D., et al. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute, 82(13), 1107–1112. [DOI:10.1093/jnci/82.13.1107] [PMID] Stadnik, J., & J Dolatowski, Z. (2010). Biogenic amines in meat and fermented meat products. ACTA Scientiarum Polonorum Technologia Alimentaria, 9(3), 251-263. [Link] Sultan, Y.Y., & Marrez, D. A. (2014). Control of histamine formation by Morganilla morganii in synthetic media and mackerel fish using blue green alga, Spirulina platensis. Alexandria Journal of Food Science and Technology, 11(1), 1-10. [DOI:10.12816/0025345] Sung, J., Yang, C., Viennois, E., Zhang, M., & Merlin, D. (2019). Isolation, purification, and characterization of Ginger-derived Nanoparticles (GDNPs) from ginger, rhizome of zingiber officinale. Bio-Protocol, 9(19), e3390. [DOI:10.21769/BioProtoc.3390] [PMID] [PMCID] Thakur, R., Yadav, K., & Khadka, K. B. (2013). Study of antioxidant, antibacterial and anti-inflammatory activity of cinnamon (Cinamomum tamala), ginger (Zingiber officinale) and turmeric (Curcuma longa). American Journal of Life Sciences, 1(6), 273-277. [DOI:10.11648/j.ajls.20130106.16] Triki, M., Herrero, A. M., Jiménez-Colmenero, F., & Ruiz-Capillas, C. (2018). Quality assessment of fresh meat from several species based on free amino acid and biogenic amine contents during chilled storage. Foods (Basel, Switzerland), 7(9), 132. [DOI:10.3390/foods7090132] [PMID] [PMCID] Vinci, G., & Antonelli, M. L. (2002). Biogenic amines: Quality index of freshness in red and white meat. Food Control, 13(8), 519-524. [DOI:10.1016/S0956-7135(02)00031-2] Visciano, P., Schirone, M., & Paparella, A. (2020). An overview of histamine and other biogenic amines in fish and fish products. Foods (Basel, Switzerland), 9(12), 1795. [DOI:10.3390/foods9121795] [PMID] [PMCID] Yeunyongsuwan, K. & Kongkiattikajorn, J. (2005). Study of amine oxidases from cereal seedlings and local plants. Kasetsart Journal, 39(5): 212-217. [Link] Zhang, M., Viennois, E., Prasad, M., Zhang, Y., Wang, L., & Zhang, Z., et al.(2016). Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials, 101, 321-340. [DOI:10.1016/j.biomaterials.2016.06.018] [PMID] [PMCID] Zhang, Y. J., Zhang, Y., Zhou, Y., Li, G. H., Yang, W. Z., & Feng, X. S. (2019). A review of pretreatment and analytical methods of biogenic amines in food and biological samples since 2010. Journal of Chromatography. A, 1605, [DOI:10.1016/j.chroma.2019.07.015] [PMID] Zheng, H. M., Li, H. B., Wang, daW., & Liu, D. (2013). Preparation methods for monodispersed garlic oil microspheres in water using the microemulsion technique and their potential as antimicrobials. Journal of Food Science, 78(8), N1301–N1306. [DOI:10.1111/1750-3841.12208] [PMID] Zhou, X., Qiu, M., Zhao, D., Lu, F., & Ding, Y. (2016). Inhibitory effects of spices on biogenic amine accumulation during fish sauce fermentation. Journal of Food Science, 81(4), M913-M920. [DOI:10.1111/1750-3841.13255] | ||
مراجع | ||
A Eldaly, E., Mahmoud, F. A., & Abobakr, H. M. (2018). Preservative effect of chitosan coating on shelf life and sensory properties of chicken fillets during chilled storage. Journal of Nutrition and Food Security, 3(3), 139-148. [Link]
AL Badawi, M. H., Waly, N. E., Eid, M. M., & Soliman, N. A. (2022). Histopathological impact of ginger loaded nanoparticle versus ginger extract as a novel therapy of experimentally induced acute ulcerative colitis. Egyptian Journal of Histology, 45(2), 442-456. [DOI:10.21608/EJH.2021.68124.1448]
Algahtani, F. D., Morshdy, A. E., Hussein, M. A., Abouelkheir, E. S., Adeboye, A., & Valentine, A., et al. (2020). Biogenic amines and aflatoxins in some imported meat products: Incidence, occurrence, and public health impacts. Journal of Food Quality, 2020(1), 8718179. [DOI:10.1155/2020/8718179]
Ayesh, A. M., Ibraheim, M. N., El-Hakim, A. E., & Mostafa, E. A. H. (2012). Exploring the contamination level by biogenic amines in fish samples collected from markets in Thuel-Saudi Arabia. African Journal of Microbiology Research, 6(6), 1158-1164. [DOI:10.5897/AJMR11.1298]
Balamatsia, C. C., Paleologos, E. K., Kontominas, M. G., & Savvaidis, I. N. (2006). Correlation between microbial flora, sensory changes and biogenic amines formation in fresh chicken meat stored aerobically or under modified atmosphere packaging at 4 °C: Possible role of biogenic amines as spoilage indicators. Antonie van Leeuwenhoek, 89(1), 9–17. [DOI:10.1007/s10482-005-9003- 4] [PMID]
Bermúdez, R., Lorenzo, J. M., Fonseca, S., Franco, I., & Carballo, J. (2012). Strains of Staphylococcus and Bacillus isolated from traditional sausages as producers of biogenic amines. Frontiers in Microbiology, 3, [DOI:10.3389/fmicb.2012.00151] [PMID] [PMCID]
Brashears, M. M., & Chaves, B. D. (2017). The diversity of beef safety: A global reason to strengthen our current systems. Meat Science, 132, 59–71. [DOI:10.1016/j.meatsci.2017.03.015] [PMID]
Carpenter, J., & Saharan, V. K. (2017). Ultrasonic assisted formation and stability of mustard oil in water nanoemulsion: Effect of process parameters and their optimization. Ultrasonics Sonochemistry, 35(Pt A), 422–430. [DOI:10.1016/j. ultsonch.2016.10.021.] [PMID]
Doeun, D., Davaatseren, M., & Chung, M. S. (2017). Biogenic amines in foods. Food Science and Biotechnology, 26(6), 1463–1474. [DOI:10.1007/s10068-017-0239-3] [PMID] [PMCID]
Donsì, F., & Ferrari, G. (2016). Essential oil nanoemulsions as antimicrobial agents in food. Journal of Biotechnology, 233, 106–120. [DOI:10.1016/j. jbiotec.2016.07.005] [PMID]
Ekici, K., & Omer, A. K. (2020). Biogenic amines formation and their importance in fermented foods. BIO Web of Conferences, 17, [DOI:10.1051/bioconf/20201700232]
Erdag, D., Merhan, O., & Yildiz, B. (2019). Biochemical and pharmacological properties of biogenic amines. In: C. Proestos (Ed), Biogenic Amines (pp. 1-14). London: IntechOpen; 2019. [DOI:10.5772/intechopen.81569]
Grimont, P. A., & Weill, F. X. (2007). Antigenic formulae of the salmonella serovars, (9th ed.). Geneva: WHO. [Link]
Gul, O., Saricaoglu, F. T., Besir, A., Atalar, I., & Yazici, F. (2018). Effect of ultrasound treatment on the properties of nano-emulsion films obtained from hazelnut meal protein and clove essential oil. Ultrasonics Sonochemistry, 41, 466–474. [DOI:10.1016/j.ultsonch.2017.10.011] [PMID]
Gurumayum, S. (2015). Invitro Antimicrobial Activity And Preliminary Phytochemical Screening Of Methanol, Chloroform And Hot Water Extracts Of Ginger (Zingiber Officinale). Asian Journal of Pharmaceutical and Clinical Research, (8), 176-180. [Link]
Hassan, W. H., Ibrahim, A. M. K., Shany, S. A. S., & Salam, H. S. H. (2020). Virulence and resistance determinants in Pseudomonas aeruginosa isolated from pericarditis in diseased broiler chickens in Egypt. Journal of Advanced Veterinary and Animal Research, 7(3), 452–463. [DOI:10.5455/javar.2020.g441] [PMID] [PMCID]
Hassan, K. A. M., & Mujtaba, A. (2019). Antibacterial efficacy of garlic oil nano-emulsion. AIMS Agriculture and Food, 4(1), 194-205. [DOI:10.3934/agrfood.2019.1.194]
Hernández-Jover, T., Izquierdo-Pulido, M., Veciana-Nogués, M. T. & Vidal-Carou, M. C. (1997). Biogenic amine sources in cooked cured shoulder pork. Journal of Agricultural and Food Chemistry, 44(10), 3097-3101. [DOI:10.1021/jf960250s]
Jaguey-Hernández, Y., Aguilar-Arteaga, K., Ojeda-Ramirez, D., Añorve-Morga, J., González-Olivares, L. G., & Castañeda-Ovando, A. (2021). Biogenic amines levels in food processing: Efforts for their control in foodstuffs. Food Research International (Ottawa, Ont.), 144, [DOI:10.1016/j.foodres.2021.110341] [PMID]
Jairath, G., Singh, P. K., Dabur, R. S., Rani, M., & Chaudhari, M. (2015). Biogenic amines in meat and meat products and its public health significance: A review. Journal of Food Science and Technology, 52, 6835-6846. [Link]
Jastrzębska, A., Kowalska, S., & Szłyk, E. (2016). Studies of levels of biogenic amines in meat samples in relation to the content of additives. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 33(1), 27–40. [DOI:10.1080/19440049.2015.1111525] [PMID]
Kabrah, M. A. M., Faidah, H. S., Ashshi, A. M., & Turkistani, M. S. A. (2016). Antibacterial effect of onion. Scholars Journal of Applied Medical Sciences, 4(11D), 4128-4133. [Link]
Kalhotka, L., Manga, I., Přichystalová, J., Hůlová, M., Vyletělová, M. & Šustová, K. (2012). Decarboxylase activity test of the genus Enterococcus isolated from goat milk and cheese. Acta Veterinaria Brno, 81, 145-151; [DOI:10.2754/avb201281020145]
Khan, A. U. R., Nadeem, M., Bhutto, M. A., Yu, F., Xie, X., & El-Hamshary, H., et al. (2019). Physico-chemical and biological evaluation of PLCL/SF nanofibers loaded with oregano essential oil. Pharmaceutics, 11(8), 386. [DOI:10.3390/ pharmaceutics11080386] [PMID] [PMCID]
Kongkiattikajorn, J. (2015). Effect of ginger extract to inhibit biogenic amines accumulation during nham fermentation. Journal of Food Chemistry and Nanotechnology, 1(1), 15-19. [DOI:10.17756/jfcn.2015-003]
Kowalska-Krochmal, B., & Dudek-Wicher, R. (2021). The minimum inhibitory concentration of antibiotics: Methods, interpretation and clinical relevance. Pathogens, 10(2), 165. [DOI:10.3390/pathogens10020165] [PMID] [PMCID]
Li, Y., Yu, Z., Zhu, Y., & Cao, Z. (2020). Selection of nitrite-degrading and biogenic amine-degrading strains and its involved genes. Food Quality and Safety, 4(4), 225-235. [DOI:10.1093/fqsafe/fyaa027]
Liu, M., Pan, Y., Feng, M., Guo, W., Fan, X., & Feng, L., et al. (2022). Garlic essential oil in water nanoemulsion prepared by high-power ultrasound: Properties, stability and its antibacterial mechanism against MRSA isolated from pork. Ultrasonics Sonochemistry, 90, [DOI:10.1016/j.ultsonch.2022.106201] [PMID] [PMCID]
Lu, S., Ji, H., Wang, Q., Li, B., Li, K., & Xu, C., et al. (2015). The effects of starter cultures and plant extracts on the biogenic amine accumulation in traditional Chinese smoked horsemeat sausages. Food Control, 50, 869-875. [DOI:10.1016/j.foodcont.2014.08.015]
Ma, Q., Davidson, P. M., Critzer, F., & Zhong, Q. (2016). Antimicrobial activities of lauric arginate and cinnamon oil combination against foodborne pathogens: Improvement by ethylenediaminetetraacetate and possible mechanisms. LWT - Food Science and Technology, 72, 9-18. [DOI:10.1016/j.lwt.2016.04.021]
Mah, J. H., Kim, Y. J., & Wang, H. J. (2009). Inhibitory effects of garlic and other spices on biogenic amine production in Myeolchi-jeot, Korean salted and fermented anchovy product. Food Control, 20(5), 449-454. [DOI:10.1016/j.foodcont.2008.07.006]
Mahmoud, A. (2019). Effect of lettuce, marjoram and cumin essential oils on the quality and shelf life of minced meat during refrigerated storage. Zagazig Veterinary Journal, 47(3), 288-297. [DOI:10.21608/zvjz.2019.13680.1047]
Majcherczyk, J., & Surówka, K. (2019). Effects of onion or caraway on the formation of biogenic amines during sauerkraut fermentation and refrigerated storage. Food Chemistry, 298, [DOI:10.1016/j.foodchem.2019.125083] [PMID]
Markey, B., Leonard, F., Archambault, M., Cullinane, A., & Maguire, D. (2013). Clinical veterinary microbiology. Amsterdam: Elsevier Health Sciences. [Link]
Mietz, J. L., & Karmas, E. (1978). Polyamine and histamine content of rock fish, salamon, lobster and shrimp as an indicator of decomposition. Journal of Association of Official Analytical Chemists, 61(1), 139-145. [DOI:10.1093/jaoac/61.1.139]
Ningsih, I. Y., Faradisa, H., Cahyani, M. D., Rosyidi, V. A., & Hidayat, M. A. (2020). The formulation of ginger oil nanoemulsions of three varieties of ginger (Zingiber officinale Rosc.) as natural antioxidant. Journal of Research in Pharmacy, 24(6), 914-924. [DOI:10.35333/jrp.2020.251]
Pabast, M., Shariatifar, N., Beikzadeh, S., & Jahed, G. (2018). Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control, 91, 185-192. [DOI:10.1016/j.foodcont.2018.03.047]
Papageorgiou, M., Lambropoulou, D., Morrison, C., Kłodzińska, E., Namieśnik, J., & Płotka-Wasylka, J. (2018). Literature update of analytical methods for biogenic amines determination in food and beverages. TrAC Trends in Analytical Chemistry, 98, 128-42. [DOI:10.1016/j.trac.2017.11.001]
Paul, D.V., George, M.G., Dorothy, J., No-el, R.K., Wolfgang, L., Fred, A.R., Karl-Heinz, S. & William, B.W. (2009). “Bergey’s Manual of Systematic Bacteriolo-gy”. New York: Springer. [DOI: 10.1007/978-0-387-21609-6]
Pircher, A., Bauer, F., & Paulsen, P. (2007). Formation of cadaverine, histamine, putrescine and tyramine by bacteria isolated from meat, fermented sausages and cheeses. European Food Research and Technology, 226, 225-231. [DOI:10.1007/s00217-006-0530-7]
Rao, J., & McClements, D. J. (2011). Formation of flavor oil microemulsion, nanoemulsions and emulsion influence of composition and preparation method. Journal of Agricultural and Food Chemistry, 59(9), 5026–5035. [DOI:10.1021/jf200094m] [PMID]
Ruiz-Capillas, C., Jiménez Colmenero, F., Carrascosa, A. V., & Muñoz, R. (2007). Biogenic amine production in Spanish dry-cured “chorizo” sausage treated with high-pressure and kept in chilled storage. Meat Science, 77(3), 365–371. [DOI:10.1016/j.meatsci.2007.03.027] [PMID]
Ruiz-Jiménez, J., & Luque de Castro, M. D. (2006). Pervaporation as interface between solid samples and capillary electrophoresis. Determination of biogenic amines in food. Journal of Chromatography. A, 1110(1-2), 245–253. [DOI:10.1016/j.chroma.2006.01.081] [PMID]
Saad, S. M., Shaltout, F. A., Abou Elroos, N. A., & El-nahas, S. B. (2019). Antimicrobial effect of some essential oils on some pathogenic bacteria in minced meat. Journal of Food Science and Nutrition Research, 2, 013-021. [DOI:10.26502/jfsnr.2642-1100005]
Saleh, E. A., Morshdy, A. E. M., Hafez, A. E., Hussein, M. A., Elewa, E. S. & Mahmoud, A. F. A. (2017). Effect of pomegranate peel powder on the hygienic quality of beef sausage. Journal of Microbiology, Biotechnology and Food Sciences, 6(6), 1300-1304. [Link]
Salfinger, Y., & Lou Tortorello, M. (2001). Compendium of methods for the microbiological examination of Foods. Washington D.C., USA: American Public Health Association. [Link]
Schirone, M., Esposito, L., D'Onofrio, F., Visciano, P., Martuscelli, M., & Mastrocola, D., etal. (2022). Biogenic amines in meat and meat products: A review of the science and future perspectives. Foods, 11(6), 788. [DOI:10.3390/ foods11060788] [PMID] [PMCID]
Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., & Vistica, D., et al. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute, 82(13), 1107–1112. [DOI:10.1093/jnci/82.13.1107] [PMID]
Stadnik, J., & J Dolatowski, Z. (2010). Biogenic amines in meat and fermented meat products. ACTA Scientiarum Polonorum Technologia Alimentaria, 9(3), 251-263. [Link]
Sultan, Y.Y., & Marrez, D. A. (2014). Control of histamine formation by Morganilla morganii in synthetic media and mackerel fish using blue green alga, Spirulina platensis. Alexandria Journal of Food Science and Technology, 11(1), 1-10. [DOI:10.12816/0025345]
Sung, J., Yang, C., Viennois, E., Zhang, M., & Merlin, D. (2019). Isolation, purification, and characterization of Ginger-derived Nanoparticles (GDNPs) from ginger, rhizome of zingiber officinale. Bio-Protocol, 9(19), e3390. [DOI:10.21769/BioProtoc.3390] [PMID] [PMCID]
Thakur, R., Yadav, K., & Khadka, K. B. (2013). Study of antioxidant, antibacterial and anti-inflammatory activity of cinnamon (Cinamomum tamala), ginger (Zingiber officinale) and turmeric (Curcuma longa). American Journal of Life Sciences, 1(6), 273-277. [DOI:10.11648/j.ajls.20130106.16]
Triki, M., Herrero, A. M., Jiménez-Colmenero, F., & Ruiz-Capillas, C. (2018). Quality assessment of fresh meat from several species based on free amino acid and biogenic amine contents during chilled storage. Foods (Basel, Switzerland), 7(9), 132. [DOI:10.3390/foods7090132] [PMID] [PMCID]
Vinci, G., & Antonelli, M. L. (2002). Biogenic amines: Quality index of freshness in red and white meat. Food Control, 13(8), 519-524. [DOI:10.1016/S0956-7135(02)00031-2]
Visciano, P., Schirone, M., & Paparella, A. (2020). An overview of histamine and other biogenic amines in fish and fish products. Foods (Basel, Switzerland), 9(12), 1795. [DOI:10.3390/foods9121795] [PMID] [PMCID]
Yeunyongsuwan, K. & Kongkiattikajorn, J. (2005). Study of amine oxidases from cereal seedlings and local plants. Kasetsart Journal, 39(5): 212-217. [Link]
Zhang, M., Viennois, E., Prasad, M., Zhang, Y., Wang, L., & Zhang, Z., et al.(2016). Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials, 101, 321-340. [DOI:10.1016/j.biomaterials.2016.06.018] [PMID] [PMCID]
Zhang, Y. J., Zhang, Y., Zhou, Y., Li, G. H., Yang, W. Z., & Feng, X. S. (2019). A review of pretreatment and analytical methods of biogenic amines in food and biological samples since 2010. Journal of Chromatography. A, 1605, [DOI:10.1016/j.chroma.2019.07.015] [PMID]
Zheng, H. M., Li, H. B., Wang, daW., & Liu, D. (2013). Preparation methods for monodispersed garlic oil microspheres in water using the microemulsion technique and their potential as antimicrobials. Journal of Food Science, 78(8), N1301–N1306. [DOI:10.1111/1750-3841.12208] [PMID]
Zhou, X., Qiu, M., Zhao, D., Lu, F., & Ding, Y. (2016). Inhibitory effects of spices on biogenic amine accumulation during fish sauce fermentation. Journal of Food Science, 81(4), M913-M920. [DOI:10.1111/1750-3841.13255]
| ||
آمار تعداد مشاهده مقاله: 981 تعداد دریافت فایل اصل مقاله: 637 |