تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,121,654 |
تعداد دریافت فایل اصل مقاله | 97,228,889 |
Separation of CH4/H2/CO2 Gas Mixtures Using Spherical Pellets of Deposited Zeolites on Monmorillonite | ||
Journal of Chemical and Petroleum Engineering | ||
دوره 58، شماره 1، شهریور 2024، صفحه 17-29 اصل مقاله (903.77 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jchpe.2023.352190.1421 | ||
نویسندگان | ||
Shima Karimi؛ shahram sharifnia* ؛ Rasoul Neishabori Salehi | ||
Catalyst Research Center, Chem. Eng. Dept., Razi University, Kermanshah, Iran. | ||
چکیده | ||
Gas purification is necessary for many industrial processes, and the using of zeolite adsorbents is one of the low-cost methods in this field. The aim of this work is to synthesize three types of zeolite/quasi-zeolite through hydrothermal technique and evaluate their efficiency in the performance of hydrogen gas purification. The gas mixture contained hydrogen, carbon dioxide and methane. The results indicated that at different pressures, the adsorption of the desired gases at lower temperatures is more favorable. Although all three adsorbents had great performance, for all three adsorbents, carbon dioxide adsorption was higher than methane adsorption, and the order of efficiency was as follows: NaA>SAPO-34>BaA. However, SAPO-34 owned a more superior functioning in absorbing methane, and the performance was as follows: SAPO-34>NaA>BaA. It should be remarked that at pressures less than 300 kPa, the adsorption of the desired gases in the BaA adsorbent reached a higher value faster and shows the superb acting of this adsorbent at low pressures. | ||
کلیدواژهها | ||
Adsorbent؛ BaA؛ Gases Separation؛ NaA؛ SAPO-34؛ Zeolites | ||
مراجع | ||
[1] Ediger VŞ. An integrated review and analysis of multi-energy transition from fossil fuels to renewables. Energy Procedia. 2019; 156: 2-6. https://doi.org/10.1016/j.egypro.2018.11.073. [2] Hosseini S, Moradi G, Bahrami K. Acidic functionalized nanobohemite: An active catalyst for methyl ester production. International Journal of Chemical Reactor Engineering. 2019; 17(11): 1-11. https://doi.org/10.1515/ijcre-2018-0283. [3] Palmer G. Renewables rise above fossil fuels. Nature Energy. 2019; 4(7): 538-539. https://doi.org/10.1038/s41560-019-0426-y. [4] Bhan C, Verma L, Singh J. Alternative Fuels for Sustainable Development. Environmental Concerns and Sustainable Development. Springer. 2020; 317-331. https://doi.org/10.1007/978-981-13-5889-0_16. [5] Moriarty P, Honnery D. Global renewable energy resources and use in 2050. Managing Global Warming. Elsevier. 2019; 221-235. https://doi.org/10.1016/B978-0-12-814104- 5.00006-5. [6] Chapman A, Itaoka K, Hirose K, Davidson FT, Nagasawa K, Lloyd AC, Webber ME, Kurban Z, Managi S, Tamaki T. A review of four case studies assessing the potential for hydrogen penetration of the future energy system. International Journal of Hydrogen Energy. 2019; 44(13): 6371-6382. https://doi.org/10.1016/j.ijhydene.2019.01.168. [7] McCarty RD, Roder H. Selected properties of hydrogen (engineering design data), US Department of Commerce. National Bureau of Standards. 1981. https://doi.org/10.6028/NBS.MONO.168. [8] Pan X, Yan W, Jiang Y, Wang Z, Hua M, Wang Q, Jiang J. Experimental investigation of the self-ignition and jet flame of hydrogen jets released under different conditions. ACS Omega. 2019; 4(7): 12004-12011. https://doi.org/10.1021/acsomega.9b01214. [9] Sharma S, Ghoshal SK. Hydrogen the future transportation fuel: from production to applications. Renewable and Sustainable Energy Reviews. 2015; 43: 1151-1158. https://doi.org/10.1016/j.rser.2014.11.093. [10] Rievaj V, Gaňa J, Synák F. Is hydrogen the fuel of the future?. Transportation Research Procedia. 2019; 40: 469-474. https://doi.org/10.1016/j.trpro.2019.07.068. [11] Jie X, Gonzalez-Cortes S, Xiao T, Yao B, Wang J, Slocombe DR, Fang Y, Miller N, AlMegren HA, Dilworth JR. The decarbonisation of petroleum and other fossil hydrocarbon fuels for the facile production and safe storage of hydrogen. Energy & Environmental Science. 2019; 12: 238-249. https://doi.org/10.1039/C8EE02444H. [12] Liu Y, Yong X, Liu Z, Chen Z, Kang Z, Lu S. Unified catalyst for efficient and stable hydrogen production by both the electrolysis of water and the hydrolysis of ammonia borane. Advanced Sustainable Systems. 2019; 3(5): 1800161. https://doi.org/10.1002/adsu.201800161. [13] Ngo SI, Lim YI, Kim W, Seo DJ, Yoon WL. Computational fluid dynamics and experimental validation of a compact steam methane reformer for hydrogen production from natural gas. Applied Energy. 2019; 236: 340-353. https://doi.org/10.1016/j.apenergy.2018.11.075. [14] SriBala G, Michiels D, Leys C, Van Geem KM, Marin GB, Nikiforov A. Methane reforming to valuable products by an atmospheric pressure direct current discharge. Journal of Cleaner Production. 2019; 209: 655-664. http://hdl.handle.net/1854/LU-8580691. [15] Hayakawa Y, Miura T, Shizuya K, Wakazono S, Tokunaga K, Kambara S. Hydrogen production system combined with a catalytic reactor and a plasma membrane reactor from ammonia. International Journal of Hydrogen Energy. 2019; 44(20), 9987-9993. https://doi.org/10.1016/j.ijhydene.2018.12.141. [16] Jamali S, Mofarahi M, Rodrigues AE. Investigation of a novel combination of adsorbents for hydrogen purification using Cu-BTC and conventional adsorbents in pressure swing adsorption. Adsorption. 2018; 24(5): 481-498. https://doi.org/10.1007/s10450-018-9955-0. [17] Bahadori A, Kashiwao T. Modeling and analysis of hydrogen production in steam methane reforming (SMR) process. Petroleum Science and Technology. 2019; 37(12): 1425-1435. https://doi.org/10.1080/10916466.2019.1587466. [18] Shamsudin I, Abdullah A, Idris I, Gobi S, Othman M. Hydrogen purification from binary syngas by PSA with pressure equalization using microporous palm kernel shell activated carbon. Fuel. 2019; 253: 722-730. https://doi.org/10.1016/j.fuel.2019.05.029. [19] Wang Y, Low ZX, Kim S, Zhang H, Chen X, Hou J, Seong JG, Lee YM, Simon GP, Davies CH. Functionalized boron nitride nanosheets: A thermally rearranged polymer nanocomposite membrane for hydrogen separation. Angewandte Chemie. 2018; 130(49): 16288-16293. https://doi.org/10.1002/anie.201809126. [20] Wang B, Zheng Y, Zhang J, Zhang W, Zhang F, Xing W, Zhou R. Separation of light gas mixtures using zeolite SSZ-13 membranes. Microporous and Mesoporous Materials. 2019; 275: 191-199. https://doi.org/10.1016/j.micromeso.2018.08.032. [21] Xu G, Meng Z, Liu Y, Guo X, Deng K, Ding L, Lu R. Porous MOF‐205 with multiple modifications for efficiently storing hydrogen and methane as well as separating carbon dioxide from hydrogen and methane. International Journal of Energy Research. 2019; 43(13): 7517-7528. https://doi.org/10.1002/er.4631. [22] Al-Naddaf Q, Thakkar H, Rezaei F. Novel zeolite-5A@ MOF-74 composite adsorbents with core–shell structure for H2 purification. ACS Applied Materials & Interfaces. 2018; 10(35): 29656-29666. https://doi.org/10.1021/acsami.8b10494. [23] Ge L, Zhou W, Du A, Zhu Z. Porous polyethersulfone-supported zeolitic imidazolate framework membranes for hydrogen separation. The Journal of Physical Chemistry C. 2012; 116(24): 13264-13270. https://doi.org/10.1021/jp3035105. [24] Jin H, Wollbrink A, Yao R, Li Y, Caro J, Yang W. A novel CAU-10-H MOF membrane for hydrogen separation under hydrothermal conditions. Journal of Membrane Science. 2016; 513: 40-46. https://doi.org/10.1016/j.memsci.2016.04.017. [25] Delgado JA, Águeda V, Uguina M, Sotelo J, Brea P, Grande CA. Adsorption and diffusion of H2, CO, CH4, and CO2 in BPL activated carbon and 13X zeolite: evaluation of performance in pressure swing adsorption hydrogen purification by simulation. Industrial & Engineering Chemistry Research. 2014; 53(40): 15414-15426. https://doi.org/10.1021/ie403744u. [26] Delgado JA, Agueda VI, Uguina MA, Sotelo, Brea P. Hydrogen recovery from off-gases with nitrogen-rich impurity by pressure swing adsorption using CaX and 5A zeolites. Adsorption. 2015; 21(1-2): 107-123. https://doi.org/10.1007/s10450-015-9654-z. [27] He Y, Ford ME, Zhu M, Liu Q, Tumuluri U, Wu Z, Wachs IE. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5- WO3/TiO2 catalysts. Applied Catalysis B: Environmental. 2016; 193: 141-150. https://doi.org/10.1016/j.apcatb.2016.04.022. [28] Tiwari D, Bhunia H, Bajpai PK. Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies. Applied Surface Science. 2018; 439: 760-771. https://doi.org/10.1016/j.apsusc.2017.12.203. [29] Magnowski NBK, Avila AM, Lin CCH, Shi M, Kuznicki SM. Extraction of ethane from natural gas by adsorption on modified ETS-10. Chemical Engineering Science. 2011; 66(8): 1697-1701. https://doi.org/10.1016/j.ces.2011.01.005. [30] Mitxelena I, Piris M. Molecular electric moments calculated by using natural orbital functional theory. The Journal of Chemical Physics. 2016; 144(20): 204108. https://doi.org/10.1063/1.4951685. [31] Rezaei H, Rahmati M, Modarress H. Application of ANFIS and MLR models for prediction of methane adsorption on X and Y faujasite zeolites: effect of cations substitution. Neural Computing and Applications. 2017; 28(2): 301-312. https://doi.org/10.1007/s00521-015- 2057-y. [32] Vidoni A, Ravikovitch PI, Afeworki M, Calabro D, Deckman H, Ruthven D. Adsorption of CO2 on high silica MFI and DDR zeolites: Structural defects and differences between adsorbent samples. Microporous and Mesoporous Materials. 2020; 294: 109818. https://doi.org/10.1016/j.micromeso.2019.109818. [33] Wang X, Zeng S, Wang J, Shang D, Zhang X, Liu J, Zhang Y. Selective separation of hydrogen sulfide with pyridinium-based ionic liquids. Industrial & Engineering Chemistry Research. 2018; 57(4): 1284-1293. https://doi.org/10.1021/acs.iecr.7b04477. [34] Pham TD, Lobo RF. Adsorption equilibria of CO2 and small hydrocarbons in AEI-, CHA-, STT-, and RRO-type siliceous zeolites. Microporous and Mesoporous Materials. 2016; 236: 100-108. https://doi.org/10.1016/j.micromeso.2016.08.025. [35] Liu G, Tian P, Li J, Zhang D, Zhou F, Liu Z. Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template. Microporous and Mesoporous Materials. 2008; 111:143-149. https://doi.org/10.1016/j.micromeso.2007.07.023. | ||
آمار تعداد مشاهده مقاله: 293 تعداد دریافت فایل اصل مقاله: 328 |