تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,113,215 |
تعداد دریافت فایل اصل مقاله | 97,217,050 |
برآورد شاخصهای تنوع گونهای در جنگلهای هیرکانی با استفاده از دادههای ماهواره سنتینل-2 (مطالعة موردی: جنگل خیرود، استان مازندران) | ||
نشریه جنگل و فرآورده های چوب | ||
دوره 76، شماره 3، آذر 1402، صفحه 229-243 اصل مقاله (1.68 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jfwp.2023.362198.1261 | ||
نویسندگان | ||
آذر قیصریان؛ پرویز فاتحی* ؛ وحید اعتماد | ||
گروه جنگلداری و اقتصاد جنگل، دانشکدة منابع طبیعی، دانشگاه تهران، کرج، ایران. | ||
چکیده | ||
تنوع زیستی بهعنوان یکی از نمایه های مهم پایداری جنگل، نقش مهمی در بررسی اثرات تغییرات اقلیمی بر بومسازگانهای جنگلی ایفا میکند. اندازهگیری تنوع درختان و درختچهها در سطح جنگل، پیشنیازی برای نظارت و ارزیابی تغییرات تنوع زیستی است. سنجش از دور از جمله ابزارهای مناسب جهت جمعآوری دادهها برای برآورد تنوع گونهای است. بدینمنظور در پژوهش حاضر توانایی دادههای سنجندة MSI ماهوارة سنتینل-2 مورد آزمون قرار گرفت. ابتدا در بخش های پاتم، نمخانه، و گرازبن جنگل خیرود تعداد 75 قطعهنمونه با ابعاد 20×20 متر پیادهسازی و مشخصات نوع، تعداد گونهها در هر قطعهنمونة برداشت شدند. سپس شاخصهای تنوع گونهای بتا (جاکارد و سورنسن) برای هر یک از قطعههای نمونه در نرمافزار R محاسبه شدند. تصاویر سنتینل-2 مربوط به تاریخهای 19 مرداد ماه (فصل تابستان) و 22 مهر ماه (فصل پاییز) سال 1400 دریافت شدند. پس از انجام پیشپردازشها و اطمینان از کیفیت دادههای ماهوارهای، پردازشهای شامل تهیة شاخصهای پوشش گیاهی، اعمال تجزیه مؤلفههای اصلی (PCA)، تبدیل تسلدکپ و محاسبة متغیرهای بافتی انجام شدند. همبستگی بین شاخصهای تنوع گونهای اندازهگیری شدة زمینی و متغیرهای طیفی و بافتی در سطح احتمال 95 درصد بررسی شد. بهمنظور مدلسازی از رگرسیون خطی چندمتغیره به روش گامبهگام و جنگل تصادفی استفاده شد. نتایج تحلیل رگرسیون نشان دادند متغیرهای بافتی حاصل از تصویر فصل پاییز با ضریب تبیین برابر 0/383 و درصد خطای جذر میانگین مربعات معادل 36/57 مطلوبترین عملکرد را در برآورد شاخص تنوع گونهای سورنسن داشته است. بهطور کلی، نتایج پژوهش حاضر بیان کرد تصاویر ماهوارهای سنتینل-2 عملکرد متوسطی در برآورد شاخصهای تنوع گونهای در سه بخش مورد مطالعة جنگل خیرود دارد. | ||
کلیدواژهها | ||
تنوع گونهای بتا؛ جنگل تصادفی؛ جنگلهای هیرکانی؛ رگرسیون خطی چندمتغیره؛ سنتینل-2 | ||
عنوان مقاله [English] | ||
Estimation of species diversity in the Hyrcanian forests using Sentinel-2 Data (Case study: Kheyrud forest, Mazandaran) | ||
نویسندگان [English] | ||
Azar Ghaisaryan؛ Parviz Fatehi؛ Vahid Etemad | ||
Department of Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran, Karaj, Iran. | ||
چکیده [English] | ||
As a sustainable forest indicator, biodiversity plays a crucial role in understanding the effects of climate change on forest ecosystems. Measuring the diversity of trees and shrubs in forests is essential for monitoring and evaluating changes in biodiversity. Remote sensing (RS) is an effective tool for collecting such data. To estimate tree and shrub species diversity, we used Sentinel-2 data from August 10 and October 13, 2021. We measured 75 field plots with dimensions of 20 m × 20 m in the Patom, Namkhaneh, and Gorazban districts. In each field plot, the tree species and diameter at breast height of all trees with a diameter greater than 7.5 cm were recorded. We used the Jaccard and Sorensen indices in R software to calculate the beta diversity indices for each sample plot. Preprocessing steps were applied to the Sentinel2 data, and we then performed several spectral transformation approaches, that is, vegetation indices (VIs), principal component analysis (PCA), and Tasseled Cap, and generated texture variables. A vector map was used to extract the spectral and textural values corresponding to each field plot. Correlation analysis between the measured species diversity and spectral and textural variables was conducted at a 95% probability level. Multiple Linear Regression (MLR) analysis was performed using stepwise and Random Forest (RF) methods for modeling. Our regression analysis revealed that texture variables with a window size of 5×5 and spatial resolution of 10 m in Sentinel-2 summer images had the best performance in estimating the Sorensen diversity index( R2= 0.383 and RMSE%= 36.57). However, based on our results, we can conclude that the Sentinel-2 data has a moderate performance in estimating diversity in the Patom, Namkhaneh, and Gorazbon districts. | ||
کلیدواژهها [English] | ||
Beta Species Diversity, Hyrcanian Forests, Multiple Linear Regression, Random Forest, Sentinel-2 | ||
مراجع | ||
[1] Shang, C., Treitz, P., Caspersen, J., & Jones, T. (2019). Estimation of forest structural and compositional variables using ALS data and multi-seasonal satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 78, 360-371. [2] Tripathi, K.S., Roy, A., Kushwaha, D., Lalnunmawia, F., & Lalraminghlova, H. (2016). Perspectives of Forest Biodiversity Conservation in Northeast India. Journal of Biodiversity, Bioprospecting and Development, 3(2), 1-9. [3] Meng, J., Li, S., Wang, W., Liu, Q., Xie, S., & Ma, W. (2016). Estimation of forest structural diversity using the spectral and textural information derived from SPOT-5 satellite images. Remote Sensing, 8(2), 125. [4] Nouri, Z., Fakhi, J., Zahedi, A., Qawamuddin Zubeiri, M., & Rahmani, R. (1389). Evaluating the diversity of tree and shrub species and its effect on sustainable forest management (case study: Patom section of Khairudkanar forest). Journal of Forest and Wood Products, 63(2), 201-214. (In Persian) [5] Cardoso, P., & Riga, F. (2015). BAT – Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Article in Methods in Ecology and Evolution, 6(2), 232-236. [6] Arekhi, M., Yılmaz, O. Y., Yılmaz, H., & Akyüz, Y. F. (2017). Can tree species diversity be assessed with Landsat data in a temperate forest?. Environmental Monitoring and Assessment, 189(11), 1-14. [7] Gamfeldt, L., Sanal, T., Bagchi, R., & Jonsson, M. (2013). Higher levels of multiple ecosystem services are found in forests with more tree species. Article in Nature Communications, 4(1), 1-8. [8] Rossi, C., Kneubühler, M., Schütz, M., Schaepman, M. E., Haller, R. M., & Risch, A. C. (2021). Remote sensing of spectral diversity: A new methodological approach to account for spatio-temporal dissimilarities between plant communities. Ecological Indicators, 130, 108106. [9] Mallinis, G., Chrysafis, I., Korakis, G., Eleanna P., & Apostolos, P.K. (2020). A Random Forest Modelling Procedure for a Multi-Sensor Assessment of Tree Species Diversity. Journal of Remote Sensing, 12(7), 1-16. [10] Rocchin, D., Boyd, D., & Baptiste Feret, J., (2015). Satellite remote sensing to monitor species diversity: potential and pitfalls. Remote Sensing in Ecology Conservation, 2(1), 25-36. [11] Anderson, C. (2018). Biodiversity monitoring, earth observations and the ecology of scale. Ecology Letters, 21(10), 1572-1585. [12] Wang, R., Gamon, J.A., Montgomery, R.A., Townsend, P.A., Zygielbaum, A.I., Bitan, K., Tilman, D., & Cavender-Bares, J. (2016). Seasonal variation in the NDVI—species richness relationship in a prairie grassland experiment (Cedar Creek). Remote Sensing, 8, 128. [13] Saedmochshi, A., Pir Bavaghar, M., Shabanian, N., Fatehi, P. (2019). The possibility of estimating species diversity using Sentinel satellite optical images (case study: Marivan forests). Forest and wood products. Iranian Natural Resources Journal, 72(2), 101-110. (In Persian) [14] Akbari, H., & Kalbi, S. (2019). Modeling the diversity of tree species in circular forest forests using GeoEye images (Case study: Sari Gardeshi Series). Journal of Wood and Forest Science and Technology, 26(2): 51-62. (In Persian) [15] Akbari, H., & Kalbi, S. (2016). Determining Pleiades satellite data capability for tree diversity modeling. iForest-Biogeosciences and Forestry, 10(1), 348. [16] Gyamfi-Ampadu, E., Gebreslasie, M., & Mendoza-Ponce, A. (2021). Evaluating Multi-Sensors Spectral and Spatial Resolutions for Tree Species Diversity Prediction. Remote Sensing, 13(5), 1033. [17] Marzialetti, F., Cascone, S., Frate, L., Di Febbraro, M., Acosta, A.T.R., & Carranza, M.L. (2021). Measuring Alpha and Beta Diversity by Field and Remote-Sensing Data: A Challenge for Coastal Dunes Biodiversity Monitoring. Remote Sensing, 13(10), 1928. [18] Fundisi, E., Musakwa W., Ahmed, F.B., & Tesfamichael, S.G. (2020). Estimation of woody plant species diversity during a dry season in a savanna environment using the spectral and textural information derived from WorldView-2 imagery. PLoS ONE, 15(6), 1-19. [19] Persson, M., Lindberg, E., & Reese, H. (2018). Tree Species Classification with Multi-Temporal Sentinel-2 Data. Journal of Remote Sensing, 10(11), 1-17. [20] Professors of the Department of Forestry and Forest Economics, (1392). The second revision plan of Nemkhaneh series, University of Tehran Educational and Research Forest (Kheyrud Forest), Faculty of Natural Resources, 500 p. [21] Krebs, C. J. (1999). Ecological Methodology, Benjamin/Cummings Publication, The University of California, 620 p. [22] Sorensen, T.A. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter, 5, 1-34. [23] Zobeiri, M.., Majd, A.(1392).Familiarity with remote sensing technology and its application in natural resources.Tehran University Press, 317 p. [24] Fatemi, Seyyed Baqer, Rezaei, Youssef. (2016). Basics of Remote Sensing. Azadeh Publications, 327 p. [25] Hadjimitsis, D.G., Papadavid, G., Agapiou, A., Themistocleous, K., Hadjimitsis, M.G., Retalis, A., Michaelides, S., Chrysoulakis, N., Toulios, L., & Clayton, C.R.I. (2010). Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices. Natural Hazards and Earth System Sciences, 10(1), 89-95. [26] Li, C., Zhou, L., & Xu, W. (2021). Estimating aboveground biomass using Sentinel-2 MSI data and ensemble algorithms for grassland in the Shengjin Lake Wetland, China. Remote Sensing, 13(8), 1595. [27] Li, L., Zhou, B., Liu, Y., Wu, Y., Tang, J., Xu, W., Wang, L., & Ou, G. (2023). Reduction in Uncertainty in Forest Aboveground Biomass Estimation Using Sentinel-2 Images: A Case Study of Pinus densata Forests in Shangri-La City, China. Remote Sensing, 15(3), 559. [28] Moghadam, M. (2008). Descriptive and statistical ecology of vegetation. Tehran University Press, 274 p. [29] Noorian, N., Shataei Joibari, Sh., & Mohammadi, J. (1996). Investigating the status of diversity of tree and shrub species in forests with different forestry management plans. Journal of Applied Ecology, 6(3), 54-43. [30] Bayat, M., & Heydari Mustali, S. (2021). Evaluation and comparison of biodiversity indices of tree species in Hyrkan forests (case study: Khairud, Ramsar and Neka forests). Plant Research Journal (Iranian Biology Journal), 34(2), 315-326. (In Persian) [31] Khare, S., Latifi, H., & Rossi, S. (2019). Forest beta-diversity analysis by remote sensing: How scale and sensors affect the Rao’s Q index. Ecological Indicators, 106, 105520. [32] Chrysafis, I., Korakis, G., Kyriazopoulos, A.P., & Mallinis, G. (2020). Predicting tree species diversity using geodiversity and Sentinel-2 multi-seasonal spectral information. Sustainability, 12(21), 9250. [33] Kampouri, M., Kolokoussis, P., Demetre, A., & Vassilia, K. (2018). Mapping of Forest Tree Distribution and Estimation of Forest Biodiversity using Sentinel-2 Imagery in the University Research Forest Taxiarchis in Chalkidiki, Greece, Geocarto International, 34(12), 1273-1285. [34] Hall-Beyer, M. (2017). Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. International Journal of Remote Sensing, 38(5), 1312-1338. [35] Silver, M., Tiwari, A., & Karnieli, A. (2019). Identifying vegetation in arid regions using object-based image analysis with RGB-only aerial imagery. Remote Sensing, 11(19), 2308. | ||
آمار تعداد مشاهده مقاله: 317 تعداد دریافت فایل اصل مقاله: 280 |