تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,116,396 |
تعداد دریافت فایل اصل مقاله | 97,220,912 |
دقت محاسباتی مورد نیاز در ارزیابی مدلهای ژئوپتانسیلی جهانی | ||
فیزیک زمین و فضا | ||
مقاله 1، دوره 50، شماره 2، تیر 1403، صفحه 265-282 اصل مقاله (1.01 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2024.357748.1007516 | ||
نویسندگان | ||
مهدی مسیب زاده* 1؛ روح اله کریمی2؛ علیرضا آزموده اردلان3 | ||
1گروه مهندسی عمران، دانشگاه آزاد اسلامی واحد زرند، کرمان، ایران. | ||
2گروه ژئودزی و مهندسی نقشهبرداری، دانشکده مهندسی عمران و نقشه برداری، دانشگاه تفرش، تفرش، ایران. | ||
3گروه ژئودزی و هیدروگرافی، دانشکده مهندسی نقشهبرداری و اطلاعات مکانی، پردیس دانشکدههای فنی، دانشگاه تهران، تهران، ایران. | ||
چکیده | ||
یکی از چالشهای اصلی در بهکارگیری مدلهای ژئوپتانسیلی جهانی، محاسبه توابع لژاندر وابسته نوع اول بر اساس فرمولهای بازگشتی معمول است. از آنجاییکه اکثر نرمافزارهای محاسباتی بهطور پیشفرض از فرمت «دقت مضاعف» در محاسبات استفاده میکنند، یک سوال مهم این است که آیا این سطح دقت برای محاسبه توابع لژاندر وابسته نوع اول و ارزیابی مدلهای ژئوپتانسیلی کافی است؟ نتایج نشان میدهد که محاسبه توابع لژاندر در درجه 2190، معادل بالاترین درجه مدلهای ژئوپتانسیلی جهانی موجود، حتی با بهکارگیری دقت مضاعف، برای عرضهای کروی در بازه [ʹ33˚78 وʹ20˚56] از دقت کافی برخوردار نیست، که بیشترین کاهش دقت در عرض کروی 60 درجه رخ میدهد. همچنین نتایج نشان میدهد که در عرض کروی 60 درجه، محاسبه توابع لژاندر در درجات بالاتر از 2029، دچار افت دقت شده و این افت دقت با افزایش درجه تشدید میشود. بر اساس نتایج، محاسبه پتانسیل ثقل و شتاب ثقل تا درجه 2190، بهترتیب در محدوده عرضهای کروی ازʹ32˚57 تاʹ13˚60 و ازʹ41˚57 تا ʹ13˚60 دچار افت شدید دقت میشود. از نتایج ما درمییابیم که حداکثر درجه بسط برای محاسبه دقیق پتانسیل ثقل و شتاب ثقل برای تمام عرضهای کروی، بهترتیب درجه 2065 و 2071 است. در این تحقیق، ما نشان میدهیم که برای محاسبه توابع لژاندر بر اساس روابط بازگشتی و تولید تابعکهای میدان ثقل بر اساس مدلهای ژئوپتانسیلی درجات بالای کنونی، نیازمند حفظ «دقت مضاعف طویل» در تمام فرایند محاسباتی هستیم. | ||
کلیدواژهها | ||
مدل ژئوپتانسیلی؛ توابع وابسته لژاندر؛ شتاب ثقل؛ پتانسیل | ||
عنوان مقاله [English] | ||
Computational accuracy required in the evaluation of global geopotential models | ||
نویسندگان [English] | ||
Mahdi Mosayebzadeh1؛ Roohollah Karimi2؛ Alireza Azmoudeh Ardalan3 | ||
1Department of Civil Engineering, Islamic Azad University, Zarand Branch, Kerman, Iran. | ||
2Department of Geodesy and Surveying Engineering, Faculty of Civil and Surveying Engineering, Tafresh University, Tafresh, Iran. | ||
3Department of Geodesy and Hydrography, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran. | ||
چکیده [English] | ||
Global geopotential models (GGMs) are mainly used in the remove-compute-restore (RCR) technique applied to gravity field modeling such as geoid determination and height datum unification. The increase in the number and quality of gravity data has led the developers of GGMs to produce models with higher resolution and accuracy. Basically, the long-wavelength coefficients of the gravity field are computed based on satellite data, while the medium- and short-wavelength coefficients are calculated based on terrestrial (land and sea) data. One of the main challenges regarding the evaluation of high-degree GGMs is to compute the associated Legendre functions of the first kind based on the usual recursive formulas. Since most computational softwares use the double-precision format by default, an important question is whether this level of precision is sufficient to numerically evaluate the associated Legendre functions of the first kind? To answer this question, the computation of the associated Legendre functions of the first kind in different degrees and latitudes is studied based on MATLAB software, which uses the double-precision format by default. From the numerical results, we find that the calculation of associated Legendre functions of the first kind up to degree of 2190 (the highest degree of existing GGMs), does not have sufficient accuracy at latitudes between 56°20׳ and 78°33׳, where the most critical state occurs at the latitude 60°. We also find that the accuracy of the calculation of associated Legendre functions at the latitude 60° (the most critical state) significantly decreases for the degrees higher than 2029. These results imply that the usual computational softwares based on the double-precision format are not suitable for calculating the associated Legendre functions in all degrees and latitudes. This is due to the fact that if we consider the associated Legendre functions of the first kind in the form of a matrix with the dimensions corresponding to the degree and order of the functions, as the degree increases, the numbers on the main diagonal approach to the number 10-308 and thus they are considered zero. In the recursive method, the entries below the main diagonal are calculated from the entries on the main diagonal. Since the entries below the main diagonal become very large as they move away from the main diameter, any error in computing the main diagonal entries leads to a large error in computing the entries below the main diagonal. In this paper, we also study the challenges of using the associated Legendre functions of the first kind in the production of gravity field functionals based on a GGM, utilizing MATLAB software. The results show that the gravity potential computation up to degree of 2190 suffers from very large computational errors at latitudes between 57°32׳ and 60°13׳. We observe that the safe degrees for the gravity potential computation in all latitudes are degrees less than 2065. The critical latitudes and degrees for the gravity calculation are somewhat different. The results indicate that the gravity computation up to degree of 2190 leads to very large errors at latitudes between 57°41׳ and 60°13׳. In addition, the maximum degree of expansion that grants sufficient accuracy for the calculation of gravity for all latitudes is estimated to be 2071. Therefore, since the usual computational software based on the double-precision format is not suitable for evaluating the current high-degree GGMs, in this research, a new proposal based on the use of the “long double-precision” format is presented and evaluated. Based on our evaluations, the use of the long double-precision format throughout the computational procedure provides sufficient accuracy to compute the gravity field functionals based on the current high-degree GGMs. | ||
کلیدواژهها [English] | ||
Geopotential model, Associated Legendre function, Gravitational acceleration, Potential | ||
مراجع | ||
Balmino, G., Vales, N., Bonvalot, S., & Briais, A. (2012). Spherical Harmonic modeling to ultrahigh degree of Bouguer and isostatic anomalies. J. geod, 86, 499–520. DOI: 10.1007/s00190-011 Bosch, W. (2000). On the Computation of Derivatives of Legendre Functions. Phys. Chem. Earth (A), 25(9-1 I), 655-659. Bucha, B., & Janák, J. (2013). A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders. Computers & Geosciences, 56, 186-196, https://doi.org/10.1016/j.cageo.2013.03.012. Clenshaw, C. W. (1955). A note on the summation of Chebyshev series. Mathematics of Computation, 9(51), 118–118. doi:10.1090/s0025-5718-1955-0071. Colombo, O.L. (1981). Numerical methods for harmonic analysis on the sphere. Report No. 310, Department of Geodetic Science and Surveying”, The Ohio State University, Columbus, Ohio, 139pp,1981. Cunningham, L.E. (1970). On the computation of the spherical harmonic terms needed during the numerical integration of the orbitalmotion of an artificial satellite. Celestial Mech, 2, 207–216. Fantino, E.m & Casoto, S. (2009). Methods of harmonic synthesis for global geopotential models and their fi rst-, second- and third-order gradients. J. Geod., 83, 595–619. DOI: 10.1007/s00190-008-0275-0. Foerste, C., Bruinsma, S.L., Abrykosov, O. Lemoine, J., Marty, J., Flechtner, F., Balmino, G., Barthelmes, F., & Biancale, R. (2014). EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. https://doi.org/10.5880/icgem.2015.1. Fukushima, T. (2018). Fast computation of sine/cosine series coefficients of associated Legendre function of arbitrary high degree and order. Journal of Geodetic Science, 8(1), 162-173. https://doi.org/10.1515/jogs-2018-0017. Fukushima, T. (2012). Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers. J. Geod, 86, 271–285. https://doi.org/10.1007/s00190-011-0519-2. Goli, M., Foroughi, I., & Novák, P. (2022). New methods for numerical evaluation of ultra-high degree and order associated Legendre functions. Stud Geophys Geod, 66, 81–97. https://doi.org/10.1007/s11200-022-0830-9. Heiskanen, W.A., & Moritz, H. (1967). Physical geodesy. San Francisco, WH Freeman. Holmes, S. A., & Featherstone, W.E. (2002). A unified approach to the Clenshaw summation and the recursive computation of very degree and order normalised associated Legendre functions. Journal of Geodesy, 76, 279-299. IEEE, (2008) Computer Society: IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008, (2008). Jekeli, C., Lee, K. J. & Kwon, J. H. (2007). On the computation and approximation of ultra-high-degree spherical harmonic series. J. Geod., 81, 603–615. DOI: 10.1007/s00190-006-0123-z. Métris, G., Xu, J., & Wytrzyszczak, I. (1998). Derivatives of the Gravity Potential with Respect to Rectangular Coordinates. Celestial Mechanics and Dynamical Astronomy, 71, 137–151 (1998). https://doi.org/10.1023/A:1008361202235. Novikova, E., & Dmitrenko, A. (2016). Problems and methods of calculating the Legendre functions of arbitrary degree and order. Geodesy and Cartography, 65(2), 283-312. doi:10.1515/geocart-2016-0017. Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2008). An Earth Gravitational Model to Degree 2160: EGM2008. Presented at European Geosciences Union 2008 General Assembly, Vienna, Austria, 2008. Pines, S. (1973). Uniform representation of the gravitational potential and its derivatives. AIAA J., 11, 1508–1511. Rexer, M., & Hirt, C. (2015). Ultra-high-degree surface spherical harmonic analysis using the Gauss–Legendre and the Driscoll/Healy Quadrature theorem and application to planetary topography models of Earth, Mars and Moon. Surv Geophys, 36(6), 803–830. https://doi.org/10.1007/s10712-015-9345-z. Smith, J.M., Olver, F., & Lozier, D. (1981). Extended-range arithmetic and normalized Legendre polynomials. ACM Trans. Math. Softw., 7, 93-105. DOI: 10.1145/355934.355940. Šprlák, M. (2011). On the numerical problems of spherical harmonics: Numerical and algebraic methods avoiding instabilities of the associated legendre’s functions. Zeitschrift für Geodäsie, Geoinformation und Landmanagement, 136(5), 310-320. Wittwer, T., Klees, R., Seitz, K. & Heck, B. (2008). Ultra-high degree spherical harmonic analysis and synthesis using extended-range arithmetic. Journal of Geodesy., 82(4-5), 223-229, 2008. Xing, Z., Li, S., Tian, M., Fan, D., & Zhang, C. (2020). Numerical experiments on column-wise recurrence formula to compute fully normalized associated Legendre functions of ultra-high degree and order. Journal of Geodesy, 94(1), 2. Yu, J., Wan, X. & Zeng Y. (2011). The integral formulas of the associated Legendre functions. J. Geod., 86(6), 467-473. | ||
آمار تعداد مشاهده مقاله: 659 تعداد دریافت فایل اصل مقاله: 576 |