تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,117,027 |
تعداد دریافت فایل اصل مقاله | 97,221,851 |
تشخیص مرز افقی بیهنجاریهای گرانی با استفاده از فیلتر انحنای هیبریدی مثبت و منفی (PNH) | ||
فیزیک زمین و فضا | ||
مقاله 4، دوره 50، شماره 2، تیر 1403، صفحه 323-340 اصل مقاله (1.83 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2024.362046.1007541 | ||
نویسندگان | ||
احمد الوندی؛ سید هانی متولی عنبران* | ||
گروه فیزیک زمین، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران. | ||
چکیده | ||
تعیین لبه و موقعیت افقی ساختارهای زمینشناسی یکی از مراحل اساسی در تفسیر دادههای میدان پتانسیل محسوب میشود. در این مقاله مثبتترین و منفیترین انحنا دادههای گرانی تجزیه و تحلیل شده و فیلتری کارآمدتر با استفاده از نشانگرهای انحنا و ترکیبات آنها برای تشخیص گوشههای ساختارها و چشمههای مدفون گرانی معرفی و استفاده شده است. روش پیشنهادی که فیلتر انحنای هیبریدی مثبت و منفی (یا به اختصار PNH) نامیده میشود، مثبتترین و منفیترین انحناها را با تنظیم فرمول و جمع وزنی در یک انحنا ترکیب و از مزایای دو انحنا مثبت و منفی برای بهبود تشخیص لبه دادههای گرانی استفاده میکند. بدینمنظور ابتدا توانایی فیلتر PNH با در نظر گرفتن سه سناریو مختلف برای چگالی (مثبت، منفی و مثبت-منفی) برای مدل گرانی نسبتاً پیچیده مصنوعی حاصل از منشورهای مدفون بدون نوفه و همراهبا نوفه تصادفی مورد بررسی قرار گرفته که نتایج بهدستآمده بر روی مدلهای مصنوعی نشان میدهد فیلتر انحنای هیبریدی مثبت و منفی، از توانایی بهتری برای تشخیص مرزهای افقی ساختارهای مدفون با چگالی متفاوت و عمقهای مختلف برخوردار است. همچنین از فیلترهای استاندارد تعیین گوشه مانند، مشتق قائم مرتبه دوم گرانی و فیلتر زاویه تیلت برای مقایسه و صحت سنجی توانایی فیلترهای نشانگر انحنا بر روی مدل مصنوعی استفاده شده است. در ادامه کیفیت فیلتر PNH ابتدا بر روی داده های واقعی یک معدن طلا واقع در منطقه ویتواترزند (آفریقای جنوبی)، سپس بر روی داده های گرانی مربوط به گنبد نمکی آجیچای واقع در استان آذربایجانشرقی (ایران) و در پایان برای تعیین موقعیت ساختارهای مدفون محدوده درازگودال ماریانا با استفاده از دادههای گرانی ماهوارهای (WGM-2012) مورد بررسی قرار گرفته است. | ||
کلیدواژهها | ||
تعیین گوشه؛ دادههای گرانی زمینی و ماهوارهای؛ فیلتر انحنای هیبریدی | ||
عنوان مقاله [English] | ||
Detection of the horizontal boundary of gravity anomalies using the hybrid positive and negative curvature (PNH) procedure | ||
نویسندگان [English] | ||
Ahmad Alvandi؛ Seyed Hani Motavalli-Anbaran | ||
Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran. | ||
چکیده [English] | ||
Determining the edge and horizontal position of geologic structures is one of the fundamental steps in interpreting potential field data. Several filters have been introduced that use the concept of curvature to determine the edge of potential field data. However, these filters have advantages and disadvantages in detecting causative sources. Therefore, it seems necessary to introduce more efficient approaches. In this work, the most positive and most negative curvatures of gravity field data were analyzed, and a more efficient filter was introduced and applied that uses the concept of curvature and its combination to delineate the edges of geological structures and buried sources. The proposed method, called the hybrid positive and negative curvature (PNH) approach, combines the most positive and most negative curvatures into one curvature by fitting the formula and weighted summation. The proposed strategy takes advantage of both positive and negative curvatures to improve the edge detection of gravity field data. To this end, the performance of the PNH procedure was investigated considering different density assumptions (positive, negative, and positive-negative) for the relatively imposed synthetic gravity model resulting from buried prisms. The results obtained on synthetic models with and without noise show that the PNH procedure can detect the horizontal boundaries of buried structures relatively well. Of course, due to the use of directional derivatives in the filter of the hybrid positive and negative curvature approach, it seems very necessary to use noise-reducing filters before applying edge detection methods. Moreover, conventional filters such as the second vertical derivative (SVD) and the tilt angle (TDR) were used to compare the performance of the hybrid positive and negative curvature filter on the synthetic model. However, the obtained results show that the second vertical derivative and the tilt angle do not have the required capability to determine the edge of the synthetic model. In the following, the quality of the most positive and most negative curvatures filter and the hybrid positive and negative curvature were investigated using real data from a gold mine in the Witwatersrand area (South Africa) and also gravity data from the Aji-chai salt dome, East Azerbaijan province (Iran) and then using WGM-2012 derived gravity data belonging to the Marian trench area. Due to the sensitivity of the filters to noise, the upward continuation filter was applied before determining the edge of the buried structures. The edge maps from the Witwatersrand area and the data from the Aji-chai salt dome obtained using the hybrid positive and negative curvature determination method, demonstrate acceptable accuracy of this filter in determining the edge and representing the horizontal position of various geological structures. By using the PNH filter, the lateral boundaries of the main structures and other subsurface sources are well detected. Of course, due to the noise sensitivity of this filter, which is due to the use of second-order gravity derivatives, good quality data without noise must be used. Therefore, it is suggested that noise attenuate filters, such as upward continuation method, must be used prior to creating the maps to determine the edge. Therefore, the PNH edge detection method can be reliably used for qualitative interpretation of gravity field data. | ||
کلیدواژهها [English] | ||
edge detection, WGM-2012 derived gravity data, hybrid curvature procedure | ||
مراجع | ||
الوندی، ا.؛ دنیز توکتای، ه. و فام، ل. (1400). تفسیر دادههای گرانی با استفاده از تابع لجستیک و گرادیان افقی کل، مطالعه موردی: تاقدیس چارک. پژوهشهای ژئوفیزیک کاربردی، 7(4)، 401-412.
الوندی، ا.؛ دنیز توکتای، ه. و فام، ل. (1401). توانایی فیلتر لجستیک بهبود یافته در تعیین گوشه ها و مرزهای جانبی آنومالی های گرانی و مغناطیسی توزگولو ترکیه. نشریه مهندسی معدن، 17(56)، 57-72.
رضوی، ا. و جعفری، ف. (1387). اکتشاف پتاس با استفاده از روش مغناطیسسنجی و گرانیسنجی در منطقه آجیچای. سازمان زمینشناسی و اکتشافات معدنی کشور.
Abedi, M. (2018). An integrated approach to evaluate the Aji-Chai potash resources in Iran using potential field data. Journal of African Earth Sciences, 139, 379–391. Albers E, Shervais JW, Hansen CT, Ichiyama Y and Fryer P (2022) Shallow Depth, Substantial Change: FluidMetasomatism Causes Major Compositional Modifications of Subducted Volcanics (Mariana Forearc). Front. Earth Sci. 10:826312. doi: 10.3389/feart.2022.826312 Alvandi, A., & Ghanati, R. (2023). Using magnetic data for estimating the location of lateral boundaries and the depth of the shallow salt dome of Aji-Chai, East Azerbaijan Province, Iran. International Journal of Mining and Geo-Engineering, 57(3), 251-258. doi: 10.22059/ijmge.2023.352685.595014. Alvandi, A., & Ardestani, V. E. (2023). Edge detection of potential field anomalies using the Gompertz function as a high-resolution edge enhancement filter. Bulletin of Geophysics and Oceanography, 64, 279–300. https://doi.org/10.4430/bgo00420 Barnicoat, A. C., Henderson, I. H. C., Knipe, R. J., Yardley, B. W. D., Napier, R. W., Fox, N. P. C., Kenyon, A. K., Muntingh, Strydom, D. J., D., Winkler, K. S., Lawrence S. R., & Cornford, C. (1997). Hydrothermal gold mineralization in the Witwatersrand basin. Nature, 386 (6627), 820–824. Beach, A., & Smith, R. (2007). Structural geometry and development of the Witwatersrand basin, South Africa. Geological Society, London. Special Publications, 272, 533–542. Cevallos, C., Kovac, P., & Lowe, S. J. (2013). Application of curvatures to airborne gravity gradient data in oil exploration. Geophysics, 78, G81–G88. Cordell, L., & Grauch, V. J. S. (1985). Mapping basement magnetization zones from aeromagnetic data in the San Juan basin: New Mexico, in J. W. Hinze, ed., The utility of regional gravity and magnetic anomaly maps. SEG, 181–197. Cooper, G. R. J. (2009). Balancing images of potential-field data. Geophysics, 74, L17–L20. Cooper, G. R. J., & Cowan, D. R. (2006). Enhancing potential field data using filters based on the local phase. Computers and Geosciences, 32 1585–1591. Ferreira F. J. F., de Souza J. Bongiolo A.B.S., & Castro L.G. (2013). Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics, 78, 33–41, https://doi.org/10.1190/geo2011-0441.1. Guo, Lianghui., Gao, Rui., Meng, Xiaohong., & Zhang, Guoli. (2015). A Hybrid Positive-and-Negative Curvature Approach for Detection of the Edges of Magnetic Anomalies, and Its Application in the South China Sea. Pure and Applied Geophysics, 172, 2701–2710. https://doi.org/10.1007/s00024-014-0956-y. Miller, H. G., & Singh, V. (1994). Potential field tilt-A new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213–217. Oruç, B. (2010). Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı-Central Anatolia Region, Turkey. Pure Appl. Geophys., 168, 1769–1780. Pham, L. T. (2021). A high-resolution edge detector for interpreting potential field data: A case study from the Witwatersrand basin, South Africa. Journal of African Earth Sciences, 178, https://doi.org/10.1016/j.jafrearsci.2021.104190. Pham, L.T., Van Vu, T., Le Thi, S., & Thi Trinh, P. (2020). Enhancement of Potential Field Source Boundaries Using an Improved Logistic Filter. Pure and Applied Geophysics, 5237–5249, https://doi.org/10.1007/s00024-020-02542-9. Pham, L. T., Minh, L. H., Oksum, E., & Thanh, D. D. (2018). Determination of maximum tilt angle from analytic signal amplitude of magnetic data by the curvature-based method. Vietnam Journal of Earth Sciences, 40(4), 354–366. https://doi.org/10.15625/0866-7187/40/4/13106. Phillips, J. D., Hansen, R. O., & Blakely, R. J. (2007). The use of curvature in potential-field interpretation. Exploration Geophysics, 38, 111-119. Rao, D. B., Prakash, M. J., & Ramesh, Babu. N. (1990). 3-D and 2 1/2-D modeling of gravity anomalies with variable density contrast. Geophysical Prospecting, 38, 411–422 Roberts, A. (2001). Curvature attributes and their application to 3D interpreted horizons. First break, 19, 85–100. Robb, L. J., & Meyer, F. M. (1995). The Witwatersrand Basin, South Africa: geological framework and mineralization processes. Ore Geology Reviews, 10, 67–94 Roest, W. R., Verhoef, J., & Pilkington, M. (1992). Magnetic interpretation using the 3-D analytic signal. Geophysics, 57, 116-125. Taylor, R. D., & Anderson, E. D. (2018). Quartz-pebble conglomerate Gold Deposits. U.S. Geological Survey Scientific Investigations Report Thurston, J. B., & Smith, R. S. (1997). Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI™ method. Geophysics, 62, 807–813. Wijns, C., Perez, C., & Kowalczyk, P. (2005). Theta map: edge detection in magnetic data. Geophysics, 70, 39–43. | ||
آمار تعداد مشاهده مقاله: 724 تعداد دریافت فایل اصل مقاله: 508 |