تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,111,598 |
تعداد دریافت فایل اصل مقاله | 97,215,278 |
Assessment and comparison of root architecture and Morpho-Anatomy of Quinoa (Chenopodium quinoa Willd.) cultivars under arid and semi-arid climate. | ||
Desert | ||
مقاله 8، دوره 28، شماره 2، اسفند 2023، صفحه 279-290 اصل مقاله (828.64 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jdesert.2023.95538 | ||
نویسندگان | ||
Fatemeh Shirali1؛ Seyyed Ebrahim Seifati* 2؛ Hamid Sodaiezadeh1 | ||
1Department of Arid Land and Desert Management, School of Natural Resources and Desert Studies, Yazd University, Yazd. | ||
2Department of Arid Land and Desert Management, School of Natural Resources and Desert Studies, Yazd University, Yazd | ||
چکیده | ||
Plants in arid and semi-arid climates face limitations in accessing water resources. In addition, roots have a significant role in water uptake, nutrient absorption, hormone regulation, and mechanical anchoring. Therefore, we conducted a randomized complete block design study with four replications to investigate the root systems of four Quinoa cultivars (Rosada, Black, Titicaca, and Multi-hued Bulk) in arid and semi-arid climates. This research aimed to identify the most efficient cultivars based on their root length, root width, root fresh and dry weight, root density, root surface area, root volume, and shoot length in response to environmental stresses. No significant difference was observed between the Black and Rosada cultivars, but they outperformed the Titicaca and Multi-hued Bulk cultivars regarding root development, showing a better balance of dry matter allocation between the roots and aerial parts. The wavy and large root surface areas were observed in the Rosada cultivar, leading to improved yield. The Rosada and Black cultivars were more efficient (p<0.01) in water absorption compared to the other two studied cultivars based on various critical factors, including root-to-shoot weight ratio (0.09, 0.07), root diameter (0.66, 0.46mm), specific root length (18.6, 32.2cm.g-1), root surface area (42.6, 34.6cm3), root length (16.2, 17.3cm), root penetration and expansion into deeper soil layers (with root width and volume, 13.9, 15.3cm, and 8.3, 5.3cm3, respectively), and root surface area density (32.18, 30.16cm2). Therefore, Rosada and Black cultivars are well-suited for breeding programs in regions with moisture limitations. | ||
کلیدواژهها | ||
Abiotic stress؛ Titicaca؛ Root fineness؛ Herringbone roots | ||
مراجع | ||
References
Akcay, E., T. Mustafa, 2021. Effects of Different Irrigation Levels on Root and Shoot Development in Some Quinoa (Chenopodium quinoa Willd.) Varieties. Journal of the Institute of Science and Technology, 11(4); 3203-3212.
Akram, Z. M., S. Maqsood Ahmed Basra, M. B. Hafeez, S. Khan, S. Nazeer, S. Iqbal, M. S. Saddiq, N. Zahra, 2021. Adaptability and yield potential of new Quinoa lines under agro-ecological conditions of Faisalabad-Pakistan. Asian Journal of Agriculture and Biology, 2; 1-8.
Alvarado, R., A. Fuentes, J. Ortiz, H. Herrera, C. Arriagada, 2022. Metal (loid)-resistant bacterial consortia with antimycotic properties increase tolerance of Chenopodium quinoa Wild. to metal (loid) stress. Rhizosphere, 23; 100569.
Alvarez Flores, R. A., 2012. Morphological and architectural responses of the root system to water deficit in cultivated and wild Chenopodium cultivés. PhD Thesis. Andean America, University Montpellier II, Sciences et Techniques du languedoc. Montpellier, Hérault, France. 1-131.
Atkinson. D, 2000. Root Characteristics: Why and What to Measure. In: Smit, A.L., Bengough, A.G., Engels, C., van Noordwijk, M., Pellerin, S., van de Geijn, S.C. (eds) Root Methods. Springer, Berlin, Heidelberg. 1-31
Bagheri, M., Z. Anafjeh, S. Keshavarz, B. Foladi, 2020. Evaluation of quantitative and qualitative characteristics of new Quinoa genotypes in spring cultivation at Karaj. Iranian Journal of Field Crops Research, 18(4); 465-475.
Chen, S. B. Gong, 2021. Response and adaptation of agriculture to climate change: Evidence from China. Journal of Development Economics, 148; 102557.
Chu, G., R. Xu, S. Chen, C. Xu, Y. Liu, B. Abliz, X. Zhang, D. Wang, 2022. Root morphological‐physiological traits for japonica/indica hybrid rice with better yield performance under low N conditions. Food and Energy Security, 11(2); 1-16.
Comas, L.H., S.R. Becker, V.M.V. Cruz, P.F. Byrne, D.A. Dierig, 2013. Root traits contributing to plant productivity under drought. Frontiers in plant science, 4; 1-16.
Emadi, A., O. Alizadeh, B. Amiri, H. Pirasteh-Anosheh, M. Zare, 2022. Effect of Drought and Salinity Stress on Yield, Biochemical Properties, and Activity of Antioxidant Enzymes in Forage Sorghum. Journal of Water Research in Agriculture, 36(2); 217-232.
Fan, Y., G. Miguez-Macho., E.G. Jobbágy, R.B. Jackson, C. Otero-Casal, 2017. Hydrologic regulation of plant rooting depth. Proceedings of the National Academy of Sciences, 114(40); 10572-10577.
Gámez, A.L., D. Soba, A.M. Zamarreño, J.M. García-Mina, I. Aranjuelo, F. Morales, 2019. Effect of water stress during grain filling on yield, quality and physiological traits of Illpa and Rainbow Quinoa (Chenopodium quinoa Willd.) cultivars. Plants, 8(6); 173-178.
Ghous, M., S. Iqbal, M.A. Bakhtavar, F. Nawaz, T. Haq, S. Khan, 2022. Halophyte Quinoa: a potential hyperaccumulator of heavy metals for phytoremediation. Asian Journal of Agriculture and Biology, 4; 1-9
Hajabbasi, M.A., 2001. Tillage effects on soil compactness and wheat root morphology. Journal of Agricultural Science and Technology, 3(1); 67-77.
Hosseinalipour, B., A. Rahnama., A. Farrokhian Firouzi, 2020. Effect of drought stress on wheat root growth and architecture at vegetative growth stage. Iranian Journal of Field Crop Science, 51(1); 63-75.
Hussain, M. I., M. Farooq, Q. A. Syed, A. Ishaq, A. A. Al-Ghamdi, A. A. Hatamleh, 2021. Botany, nutritional value, phytochemical composition and biological activities of Quinoa. Plants, 10(11); 2258-2276.
Issa Ali, O., F. Rachid, A. Fatima, B. Ouafae, W. Said, 2019. Physiological and Morphological Responses of two Quinoa Cultivars (Chenopodium quinoa Willd.) to Drought Stress. Gesunde Pflanzen, 71(2); 123-133.
Jafari, F., M. Farkhari, A. Siahpoush, M. Bagheri, M. Ghanavati, 2023. Assessment of genetic diversity in some Quinoa (Chenopodium quinoa Willd.) genotypes using ISSR markers. Journal of Crop Breeding, 15(45); 125-134.
Jalal, A., K. Rauf, B. Iqbal, R. Khalil, H. Mustafa, H. M. Murad, F. Khalil, S. Khan, C.E. da Silva Oliveira, M.C.M. Teixeira Filho, 2023. Engineering legume for drought stress tolerance: Constraints, accomplishments, and future prospects. South African Journal of Botany, 159; 482-491.
Jancurová, M., L. Minarovičová, A. Dandár, 2009. Quinoa–a review. Czech Journal of Food Sciences, 27(2); 71-79.
Li, C., L. Li, M. Reynolds, J. Wang, X. Chang, X. Mao, R. Jing, 2021. Recognizing the hidden half in wheat: root system attributes associated with drought tolerance. Journal of Experimental Botany, 72(14); 5117-5133.
Liu, Y., Z. Cui, Z. Huang, M. López-Vicente, G. L. Wu, 2019. Influence of soil moisture and plant roots on the soil infiltration capacity at different stages in arid grasslands of China. Catena, 182; 104147-104175
Liu, Y., L. Guo, Z. Huang, M. López-Vicente, G.L. Wu, 2020. Root morphological characteristics and soil water infiltration capacity in semi-arid artificial grassland soils. Agricultural Water Management, 235; 106153-106159.
Ludena Urquizo, F. E., S. M. García Torres, T. Tolonen, M. Jaakkola, M. G. Pena‐Niebuhr, A. v. Wright, R.R. Carrasco-Valencia, H. Korhonen, C. Plumed‐Ferrer, 2017. Development of a fermented Quinoa‐based beverage. Food science & nutrition, 5(3); 602-608.
Mahanta, D., R. K. Rai, S. D. Mishra, A. Raja, T.J. Purakayastha, E. Varghese, 2014. Influence of phosphorus and biofertilizers on soybean and wheat root growth and properties. Field Crops Research, 166; 1-9.
Maliro, M. F., V. F. Guwela, J. Nyaika, K. M. Murphy, 2017. Preliminary Studies of the Performance of Quinoa (Chenopodium quinoa Willd.) Genotypes under Irrigated and Rainfed Conditions of Central Malawi. Frontiers in Plant Science, 8; 227.
Melini, V., F. Melini, 2021. Modelling and optimization of ultrasound-assisted extraction of phenolic compounds from black Quinoa by response surface methodology. Molecules, 26(12); 3616-3634.
Miranda-Apodaca, J., A. Yoldi-Achalandabaso, A. Aguirresarobe, A. Del Canto, U. Pérez-López, 2018. Similarities and differences between the responses to osmotic and ionic stress in Quinoa from a water use perspective. Agricultural water management, 203; 344-352.
Mirzaee-nodoushan, H., H. Roohi-pour, F. Asadi-corom, Z. Zare, S. Zare, 2015. Drought tolerance evaluation of Haloxylon aphyllum by studying root morphology under water stress. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 22(2); 201-210.
Naseri, R., A. Mirzeai, A. Abbasi, 2021. Root System of Different Barley Cultivars Influenced by Applications of Different Fertilizer Sources under Dryland Farming. Water and Soil, 35(2); 267-284. Nguyen, L.V., D. Bertero, D. T. Hoang, N. V. Long, 2022. Variation in Quinoa roots growth responses to drought stresses. Journal of Agronomy and Crop Science, 208(6); 830-840.
Rakhmankulova, Z. F., E. V. Shuyskaya, M. Y. Prokofieva, L. T. Saidova, P. Y. Voronin, 2023. Effect of Elevated CO 2 and Temperature on Plants with Different Type of Photosynthesis: Quinoa (C 3) and Amaranth (C4). Russian Journal of Plant Physiology, 70(6); 117.
Rezaei, M., S. E. Seifati, A. Tabandeh-saravi, H. Shahsavand-hasani, 2021. The morphophenological study of primary Tritipyrum lines in comparison with bread wheat and Triticale in arid climate of Yazd province. Journal of Arid Biome, 11(1), 35-47.
Seifati, S. E., S. S. Ramazanpour, H. Soltanlo, M. Salehi, N. A. Sepahvand, 2015. Study on some morphophenological traits related to yield and early maturity in Quinoa cultivars (Chenopodium quinoa Wild.). Journal of Crop Production. 8(2); 153-169.
Shirinpour, M., E. Atazadeh, A. Bybordi, H. Monirifar, A. Amini, M. A. Hossain, S. Aharizad, A. Asghari, 2023. Gene action and inheritance of grain yield and root morphological traits in hybrid maize grown under water deficit conditions. South African Journal of Botany, 161; 180-191.
Singh, S., Jain, A., A. Varma, 2021. Root Analysis of Quinoa Plant. In: Varma, A. (eds) Biology and Biotechnology of Quinoa. Springer, Singapore. 153-165.
Tumber‐Dávila, S. J., H. J. Schenk, E. Du, R. B. Jackson, 2022. Plant sizes and shapes above and belowground and their interactions with climate. New Phytologist, 235(3); 1032-1056.
Uwllah, N., M. Yüce, Z. Neslihan Öztürk Gökçe, H. Budak, 2017. Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species. BMC genomics, 18; 1-12.
Vadez, V., J. S. Rao, P. Bhatnagar‐Mathur, K. K. Sharma, 2013. DREB1A promotes root development in deep soil layers and increases water extraction under water stress in groundnut. Plant Biology, 15(1); 45-52.
Warren, J.M., K.F. DeCarlo, H. Bilheux, J. C. Bilheux, K. Caylor, 2023. Integrating fine root diameter and watershed mapping to characterize rhizosphere hydrology. Rhizosphere, 27; 100738-100751
Xiong, R., S. Liu, M. J. Considine., K. H. Siddique, H. M. Lam, Y. Chen, 2021. Root system architecture, physiological and transcriptional traits of soybean (Glycine max L.) in response to water deficit: A review. Physiologia Plantarum, 172(2); 405-418.
Zurita Silva, A., S. E. Jacobsen, F. Razzaghi, R. Álvarez Flores, K. B. Ruiz, A. Morales, H. Silva Ascencio, 2015. Quinoa drought responses and adaptation. In State of the Art Report on Quinoa around the World; FAO: Roma, Italy, 157–171. | ||
آمار تعداد مشاهده مقاله: 120 تعداد دریافت فایل اصل مقاله: 238 |