
تعداد نشریات | 162 |
تعداد شمارهها | 6,578 |
تعداد مقالات | 71,072 |
تعداد مشاهده مقاله | 125,698,711 |
تعداد دریافت فایل اصل مقاله | 98,931,155 |
بررسی پدیده پسماند سیپروفلوکساسین در خاک | ||
تحقیقات آب و خاک ایران | ||
دوره 54، شماره 10، دی 1402، صفحه 1597-1608 اصل مقاله (1.5 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.364096.669554 | ||
نویسندگان | ||
ماهرخ شریف مند1؛ ابراهیم سپهر* 2؛ میرحسن رسولی صدقیانی3؛ سیامک عصری رضایی4 | ||
1گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران. | ||
2گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
3گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه ایران | ||
4گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه ارومیه، ارومیه، ایران، | ||
چکیده | ||
آنتیبیوتیکها به عنوان آلایندههای نو ظهور تاثیر بالقوهای بر محیط زیست و سلامت انسان دارند و ورود آنها به محیط زیست نگرانیهای زیادی را ایجاد کرده است. برای مطالعه پدیده پسماند سیپروفلوکساسین در خاک، فرایند جذب با غلظتهای مختلف سیپروفلوکساسین (صفر تا یک mmol L-1) در یک نمونه خاک آهکی انجام و سپس برگشت پذیری فرآیند جذب از طریق آزمایشهای واجذب نمونههای خاک آلوده به سیپروفلوکساسین ارزیابی شد. غلظت سیپروفلوکساسین با استفاده از دستگاه کروماتوگرافی مایع با کارایی بالا (HPLC-MS/MS) تعیین شد. دادههای حاصل از آزمایش با معادلات لانگمویر، فروندلیچ و ردلیچ-پترسون برازش داده شدند. مدل ردلیچ-پترسون با کمترین میزان خطا (۲۴/۰SE=) و بیشترین ضریب همبستگی (۹۹/۰= R2) دادههای تعادلی را به خوبی توصیف کرد. مقدار عددی توان این معادله (g) کمتر از یک و در نتیجه سطوح جذب ناهمگن میباشد. جذب سیپروفلوکساسین با افزایش غلظت اولیه آنتیبیوتیک در خاک افزایش یافت، به طوری که بالاترین راندمان جذب و واجذب سیپروفلوکساسین در غلظت یک mmol L-1 به ترتیب ۹۶ و ۲ درصد بود. ضریب هیسترسیس ۸۹/۰ به دست آمد که نشاندهنده برگشتپذیری کم فرایند جذب یا پدیده پسماند است. اتصال محکم آنتیبیوتیک سیپروفلوکساسین به اجزای خاک منجر به تجزیه پذیری پایین و پایداری این آلاینده آلی در محیط خاک میگردد. | ||
کلیدواژهها | ||
آنتیبیوتیک؛ برگشت پذیری؛ پسماند؛ جذب؛ واجذب | ||
عنوان مقاله [English] | ||
Study of the Ciprofloxacin hysteresis phenomenon in soil | ||
نویسندگان [English] | ||
Mahrokh Sharifmand1؛ Ebrahim Sepehr2؛ MirHassan Rasouli-Sadaghiani3؛ Siamak Asri-Rezaei4 | ||
1Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran | ||
2Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran | ||
3Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran | ||
4Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. | ||
چکیده [English] | ||
Antibiotics as emerging pollutants, potentially affect the environment and human health and their entry into the environment has created great concerns. To study the ciprofloxacin hysteresis phenomenon in the soil, the adsorption process was done with different concentrations of ciprofloxacin (0–1 mmol L-1) on a calcareous soil system. Then, the reversibility of the adsorption process was assessed through desorption experiments of ciprofloxacin-loaded soil samples. The concentration of ciprofloxacin was determined using high-performance liquid chromatography-tandem mass spectrometry (HPLC–MS/MS). The experimental data were analyzed using the Langmuir, Freundlich, and Redlich-Peterson isotherms. The results demonstrated the experimental data followed the Redlich-Peterson isotherm model due to the lowest value of error (SE= 0.24) and the highest value of correlation coefficient (R²=0.99). The exponent value of this equation (g) was less than one, so the adsorption surfaces are heterogeneous. Ciprofloxacin adsorption increased with increasing initial concentrations. The highest adsorption and desorption efficiency of ciprofloxacin was obtained at concentration 1 mmol L-1, 96% and 2%, respectively. The hysteresis index was 0.89 indicating low reversibility of the adsorption process or hysteresis phenomenon. The strong bind of the ciprofloxacin to the soil components leads to less degradability in soil and forms stable residues in the soil environment. | ||
کلیدواژهها [English] | ||
Adsorption, Antibiotic, Desorption, Hysteresis, Reversibility | ||
مراجع | ||
Abrol, I. P., Yadav, J. S. P., & Massoud, F. I. (1988). Salt-affected soils and their management. FAO Soils Bulletins 39. Food and Agricultre Organization of the United Nations, Rome. Azanu, D., Mortey, C., Darko, G., Weisser, J. J., Styrishave, B., & Abaidoo, R. C. (2016). Uptake of antibiotics from irrigation water by plants. Chemosphere, 157, 107–114. https://doi.org/10.1016/j.chemosphere.2016.05.035. Barriuso, E., Laird, A., Koskinen, W. C., & Dowdy, R. H. (1994). Attrazine desorption from smectites. Soil Science Society of America Journal, 58(6), 1632–1638. https://doi.org/10.2136/sssaj1994.03615995005800060008x. Cela-Dablanca, R., Barreiro, A., Rodríguez-López, L., Santás-Miguel, V., Arias-Estévez, M., Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E., & Núñez-Delgado, A. (2022). Amoxicillin Retention/Release in Agricultural Soils Amended with Different Bio-Adsorbent Materials. Materials, 15, 3200. https://doi.org/10.3390/ma15093200. Celis, R., & Koskinen, W. C. (1999). An isotopic exchange method for the characterization of the irreversibility of pesticide sorption–desorption in soil. Journal of Agricultural and Food Chemistry, 47(2), 782–790. https://doi.org/10.1021/jf980763u. Chauhan, M., Saini, V. K., & Suthar, S. (2020). Ti-pillared montmorillonite clay for adsorptive removal of amoxicillin, imipramine, diclofenacsodium, and paracetamol from water. Journal of Hazardous Materials, 399, 122832–122845. https://doi.org/10.1016/j.jhazmat.2020.122832. Conde-Cid, M., Núñez-Delgado, A., Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E., Fernández-Calviño, D., & Arias-Estévez, M. (2020). Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks. Processes, 8(11), 1479–1519. https://doi.org/10.3390/pr8111479. Cycon, M., Mrozik, A., & Piotrowska-Seget, Z. (2019). Antibiotics in the Soil Environment-Degradation and Their Impact on Microbial Activity and Diversity. Frontiers of Microbiologt, 338(10), 1-45. https://doi.org/10.3389/fmicb.2019.00338. Dong, J., Xie, H., Feng, R., Lai, X., Duan, H., Xu, L., & Xia, X. (2021). Transport and fate of antibiotics in a typical aqua-agricultural catchment explained by rainfall events: Implications for catchment management. Journal of Environmental Management, 293, 112953–112963. https://doi.org/10.1016/j.jenvman.2021.112953. Duan, H., Li, X., Mei, A., Li, P., Liu, Y., Li, X., Li, W., Wang, C., & Xie, S. (2021). The diagnostic value of metagenomic next-generation sequencing in infectious diseases. BMC Infectious Diseases, 21(1), 62–69. https://doi.org/10.1186/s12879-020-05746-5. Gee, G. W., & Bauder, J. W. (1986). Particle-Size Analysis. In: Klute, A., Ed., Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, Agronomy Monograph No. 9, 2nd Edition, American Society of Agronomy/Soil Science Society of America, Madison, WI, 383-411. Githinji, L. J. M., Musey, M. K., & Ankumah, R. O. (2011). Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water, Air & Soil Pollution, 219(1), 191–201. https://doi.org/10.1007/s11270-010-0697-1. Hari, A. C., Paruchuri, R. A., Sabatini, D. A., & Kibbey, T. C. (2005). Effects of pH and cationic and nonionic surfactants on the adsorption of pharmaceuticals to a natural aquifer material. Environmental Science & Technology, 39(8), 2592-8. https://doi.org/10.1021/es048992m. Hu, S., Zhang, Y., Shen, G., Zhang, H., Yuan, Z., & Zhang, W. (2019). Adsorption/desorption behavior and mechanisms of sulfadiazine and sulfamethoxazole in agricultural soil systems. Soil and Tillage Research, 186, 233-241. https://doi.org/10.1016/j.still.2018.10.026. Igwegbe, C. A., Oba, S. N., Aniagor, C. O., Adeniyi, A. G., & Ighalo, J. O. (2019). Adsorption of Ciprofloxacin from Water: A Comprehensive Review. Journal of Industrial and Engineering Chemistry, https://doi.org/10.1016/j.jiec.2020.09.023. James, S. (1997). Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry. (Secondary). Wiley Series in Solution Chemistry. Vol. 2. Chichester: John Wiley & Sons Ltd. p. 178. Khan, N. A., Khan, S. U., Ahmed, S., Farooqi, I. H., Yousefi, M., Mohammadi, A. A., & Changani, F. (2020). Recent trends in disposal and treatment technologies of emerging-pollutants—A critical review. TrAC Trends in Analytical Chemistry, 122, 115744–115759. https://doi.org/10.1016/j.trac.2019.115744. Krzeminski, P., Tomei, M. C., Karaolia, P., Langenhoff, A., Almeida, C. M. R., Felis, E., Gritten, F., Andersen, H. R., Fernandes, T., Manaia, C. M., et al. (2019). Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Science of the Total Environment, 648, 1052–1081. https://doi.org/10.1016/j.scitotenv.2018.08.130. Martínez-Carballo, E., González-Barreiro, C., Scharf, S., & Gans, O. (2007). Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environmental Pollution, 148(2), 570–579. doi: 10.1016/j.envpol.2006.11.035. https://doi.org/10.1016/j.envpol.2006.11.035. Migliore, L., Cozzolino, S., & Fiori, M. (2003). Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere, 52(7):1233-44. https://doi.org/10.1016/S0045-6535(03)00272-8. Mutavdžić Pavlović, D., Ćurković, L., Grčić, I., & Smoljo, I. (2017). Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments. Environmental Science and Pollution Research, 24(11), 10091–10106. https://doi.org/10.1007/s11356-017-8461-3. Nelson, D. W. & Sommer, L. E. (1982). Total Carbon, Organic Carbon and Organic Matter. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd Edition. ASA-SSSA, Madison, 595-579. Rath, S., Fostier, A.H., Pereira, L.A., Dioniso, A.C., Ferreira, F.D.O., Doretto, K.M., Peruchi, L.M., Viera, A., Neto, O.F.D.O., Bosco, S.M.D., et al. (2018). Sorption behaviors of antimicrobial and antiparasitic veterinary drugs on subtropical soils. Chemosphere, 214, 111–122. https://doi.org/10.1016/j.chemosphere.2018.09.083. Rayment, G. E. & Higginson, F. R. (1992). Australian Laboratory Handbook of Soil and Water Chemical Method. Reed International Books Australia P/L, Trading as Inkata Press, Port Melbourne, 330 p. Rodríguez-López L., Santás-Miguel, V., Cela-Dablanca, R., Núñez-Delgado, A., Álvarez-Rodríguez, E., Pérez-Rodríguez, P., & Arias-Estévez, M. (2022). Ciprofloxacin and Trimethoprim Adsorption/Desorption in Agricultural Soils. International Journal Environ Res Public Health, 19(14), 8426. https://doi.org/10.3390/ijerph19148426. Salam, L. B., & Obayori, O. S. (2019). Structural and functional metagenomics analyses of a tropical agricultural soil. Spanish Journal of Soil Science, 9, 1–23. https://doi.org/10.3232/SJSS.2019.V9.N1.01. Sander, M., Lu, Y., & Pignatello, J. J. (2005). A thermodynamically based method to quantify true sorption hysteresis. Journal of Environmental Quality, 34(3), 1063-72. https://doi.org/10.2134/jeq2004.0301. Santás-Miguel, V., Díaz-Raviña, M., Martín, A., García-Campos, E., Barreiro, A., Núñez-Delgado, A., Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E., Arias-Estévez, M., & Fernández-Calviño, D. (2020). Medium-term influence of tetracyclines on total and specific microbial biomass in cultivated soils of Galicia (NW Spain). Spanish Journal of Soil Science, 10, 2017–2232. https://doi.org/10.3232/SJSS.2020.V10.N3.05. Seybold, C. A., & Mersie. W. (1996). Adsorption and Desorption of Atrazine, Deethylatrazine, Deisopropylatrazine, Hydroxyatrazine, and Metolachlor in Two Soils from Virginia. Journal of Environmental Quality, 25(6), 1179-1185. https://doi.org/10.2134/jeq1996.00472425002500060002x. Sharifmand, M., Sepehr, E., Rasouli-Sadaghiani, M. H., & Asri-Rezaei, S. (2023). Antibiotic residues in the soil; a threat to human health. Applied Soil Research, 11(1), 58-72. (In Persian) Sukul, P., Lamshöft, M., Zühlke, S., & Spiteller, M. (2008). Sorption and desorption of sulfadiazine in soil and soil-manure systems. Chemosphere, 73(8), 1344-50. https://doi.org/10.1016/j.chemosphere.2008.06.066. Sukul, P., & Spiteller, M. (2000). Metalaxyl: persistence, degradation, metabolism, and analytical methods. Reviews of Environmental Contamination and Toxicology, 164, 1-26. Trivedi, P., & Vasudevan, D. (2007). Spectroscopic investigation of ciprofloxacin speciation at the goethite-water interface. Environmental Science & Technology, 41(9), 3153-8. https://doi.org/10.1021/es061921y. Vasanth, K., Porkodi, K., & Rocha. F. (2008). Langmuir–Hinshelwood kinetics – A theoretical study. Catalysis Communications, 9(1), 82-84. https://doi.org/10.1016/j.catcom.2007.05.019. Vasudevan, D., Bruland, G. L., Torrance, B. S., Upchurch, V. G., & MacKay, A. A. (2009). pH dependent ciprofloxacin sorption to soils: interaction mechanisms and soil factors influencing sorption. Geoderma, 151(3), 68–76. https://doi.org/10.1016/j.geoderma.2009.03.007. Xie, T., Wang, M., Su, C., & Chen, W. (2018). Evaluation of the natural attenuation capacity of urban residential soils with ecosystem-service performance index (EPX) and entropy-weight methods. Environmental Pollution, 238, 222–229. https://doi.org/10.1016/j.envpol.2018.03.013. Xu, X., Ma, W., An, B., Zhou, K., Mi, K., et al. (2021). Adsorption/desorption and degradation of doxycycline in three agricultural soils. Ecotoxicology and Environmental Safety, 224, 112675. https://doi.org/10.1016/j.ecoenv.2021.112675. Zha, S. X., Zhou, Y., Jin, X., & Chen, Z. (2013). The removal of amoxicillin from wastewater using organobentonite. Journal of Environmental Management, 129, 569–576. https://doi.org/10.1016/j.jenvman.2013.08.032. Zhao, L., Dong, Y. H., & Wang H. (2010). Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Science of the Total Environment, 408(5), 1069–1075. https://doi.org/10.1016/j.scitotenv.2009.11.014. | ||
آمار تعداد مشاهده مقاله: 207 تعداد دریافت فایل اصل مقاله: 203 |