تعداد نشریات | 161 |
تعداد شمارهها | 6,479 |
تعداد مقالات | 70,031 |
تعداد مشاهده مقاله | 122,982,147 |
تعداد دریافت فایل اصل مقاله | 96,214,455 |
The Amine-Functionalized MCM-41 for Hydration and Utilization of CO2 | ||
Pollution | ||
دوره 10، شماره 1، فروردین 2024، صفحه 374-382 اصل مقاله (902.38 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2023.362270.1992 | ||
نویسندگان | ||
Mehdi Asadi* 1؛ Soheila Azordeh Molkabadi1؛ Samaneh Engameh2 | ||
1Department of Chemistry, University of Tabriz, P.O.Box 51666-16471, Tabriz- Iran | ||
2Department of Inorganic Chemistry, University of Mazandaran, P.O.Box 47416-13534, Babolsar- Iran | ||
چکیده | ||
Carbon dioxide, as a great part of greenhouse gases, stands as a major contributor to climate change; hence, various techniques have been presented for controlling and decreasing CO2 emissions. The studies show that the adsorption and conversion into environmentally benign substances are the most practical and efficient strategies for this purpose. As amines are active in CO2 adsorption, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane was chosen as an amine group to functionalize MCM-41 mesoporous in order to hydrate CO2 and convert to calcium carbonate in this study. The synthesis of the mesoporous materials and amine functionalization were carried out using the wet impregnation method, and the materials were characterized by XRD, FT-IR, SEM, and BET analysis. The results demonstrated a high adsorption capacity (165 mg CaCO3) due to the presence of the -NH2 group in the catalysts. Moreover, the results have been compared with similar mesoporous materials functionalized with metals for CO2 capture and hydration. The adsorption-desorption isotherm corresponded to type IV, as defined in the IUPAC classification. | ||
کلیدواژهها | ||
CO2 adsorption؛ MCM-41؛ amine group؛ CaCO3 | ||
مراجع | ||
Pirouzmand, M., Asadi, M. & Mohammadi, A. (2018). The remarkable activity of template-containing Mg/MCM-41 and Ni/MCM-41 in CO2 sequestration, Greenhouse Gas Sci Technol., 8 (3): 462-468. Wang, L., Yi, Y., Guo, H. & Tu, X. (2018). Atmospheric Pressure and Room Temperature Synthesis of Methanol through Plasma-Catalytic Hydrogenation of CO2, ACS Catal., 8: 90−100. Zhang, X., Huang, B., Sun, C., Lu, W., Tian, Z., Shen, P.K., Wang, H., Zhao, D. & MacFarlane, D.R. (2018). Hierarchically Ordered Nanochannel Array Membrane Reactor with Three-Dimensional Electrocatalytic Interfaces for Electrohydrogenation of CO2 to Alcohol, ACS Energy Lett., 3 (11): 2649–2655. Roy, S., Cherevotan, A. & Peter, S.C. (2018). Thermochemical CO2 Hydrogenation to Single Carbon Products: Scientific and Technological Challenges, ACS Energy Lett., 3 (8): 1938–1966. Singh, R., Singh, R., Dakshinamurthy, S., kondaveeti, S., Kim, T., Li, J., Sung, B.H., Cho, B.K., Kim, D.R., Kim, S.C., Kalia, V.C., Zhang, Y.H.P., Zhao, H., Kang, Y.C. & Lee, J.K. (2018). Insights into Cell-Free Conversion of CO2 to Chemicals by a Multienzyme Cascade Reaction, ACS Catal., 8 (12): 11085–11093. Pirouzmand, M., Nikzad-Kojanag, B. & Hosseini-Yazdi, S.A. (2016). Catalytic Capture of CO2 with Template-Containing Zn/MCM-41 and Its Transformation to Solid Carbonate, J. Braz. Chem. Soc., 27 (12): 2354-2360. Kim, S.M., Abdala, P.M., Broda, M., Hosseini, D., Copéret, C. & Müller, C. (2018). Integrated CO2 Capture and Conversion as an Efficient Process for Fuels from Greenhouse Gases, ACS Catal., 8 (4): 2815–2823 Wang, F., Lu, Z., Guo, H., Zhang, G., Li, Y., Hu, Y., Jiang, W. & Liu, G. (2023). Plasmonic Photocatalysis for CO2 Reduction: Advances, Understanding and Possibilities, Chemistry—A European Journal, 29 (25) e202202716. Liu, P., Peng, X., Men, Y.L. & Pan, Y.X. (2020). Recent progresses on improving CO2 adsorption and proton production for enhancing efficiency of photocatalytic CO2 reduction by H2O, Green Chemical Engineering, 1 (1) 33-39. Nosrati, A., Javanshir, S., Feyzi, F. & Amirnejat, S. (2023). Effective CO2 Capture and Selective Photocatalytic Conversion into CH3OH by Hierarchical Nanostructured GO–TiO2–Ag2O and GO–TiO2–Ag2O–Arg, ACS Omega, 8 (4): 3981–3991. Li, K. & G Chen, J. (2019). CO2 Hydrogenation to Methanol over ZrO2-Containing Catalysts: Insights into ZrO2 Induced Synergy, ACS Catal., 9 (9): 7840–7861. Li, M.M.J., Chen, C., Ayvali, T., Suo, H., Zheng, J., Teixeira, I., Ye, L., Zou, H., O’Hare, D. & Tsang, S.C.E. (2018). CO2 Hydrogenation to Methanol over Catalysts Derived from Single Cationic Layer CuZnGa LDH Precursors, ACS Catal., 8 (5): 4390–4401. Liu, P., Zou. X., Meng. X. Y., Peng. C., Li. X., Wang. Y., Zhao. F. & Pan. Y. X. (2022). Tuning product selectivity of CO2 hydrogenation by OH groups on Pt/γ-AlOOH and Pt/γ-Al2O3 catalysts, AlChE J., 69 (6): e18016. Brethomé, E.M., Williams, N.J., Seipp, C.A., Kidder M.K. & Custelcean, R. (2018). Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power, Nature Energy, 3: 553–559. Abdullatif, Y., Sodiq, A., Mir, N., Bicer, Y., Al-Ansari, T., El-Naas M.H. & Amhamed, A.I. (2023). Emerging trends in direct air capture of CO2: a review of technology options targeting net-zero emissions, RSC Adv., 13: 5687. Sodiq, A., Abdullatif, Y., Aissa, B., Ostovar, A., Nassar, N., El-Naas, M.H. & Amhamed, A.I. (2023). A review on progress made in direct air capture of CO2, Environmental Technology & Innovation, 29: 102991. Hack. J., Maeda. N. & Meier. D. M. (2022). Review on CO2 Capture Using Amine-Functionalized Materials, ACS Omega, 7 (44): 39520–39530. Gao, F., Ji, C., Wang, S., Wang, W., Dong, J., Guo, C., Gao Y. & Chen, G. (2022). Sterically hindered amine-functionalized MCM-41 composite for efficient carbon dioxide capture, Korean Journal of Chemical Engineering, 39: 1981–1988. Muchan, P., Saiwan C. &Nithitanakul, M. (2022). Carbon dioxide adsorption/desorption performance of single- and blended-amines-impregnated MCM-41 mesoporous silica in post-combustion carbon capture, Clean Energy, 6: 424–437. Mukherjee, S., Akshay. & Samanta, A.N. (2019). Amine-impregnated MCM-41 in post-combustion CO2 capture: Synthesis, characterization, isotherm modelling, Advanced Powder Technology, 30 (12): 3231-3240. Asadi, M. & Azordeh, S. (2020). Removal of Heavy Metals Pb2+ and Cd2+ from Water with Nano-Porous Materials, Nashrie Shimi ve Mohandesi Shimi Iran, 39 (4): 13-23. Anbia, M., Çelik, M.S., Ghorbani, F., & Younesi, H. (2013). Aqueous Cadmium Ions Removal by Adsorption on APTMS Grafted Mesoporous Silica MCM-41 in Batch and Fixed Bed Column Processes, IJE Transaction B: Applications, 26 (5): 473-488. Miricioiu, M.G., Iacob, C., Nechifor G. & Niculescu, V.C. (2019). High Selective Mixed Membranes Based on Mesoporous MCM-41 and MCM-41-NH2 Particles in a Polysulfone Matrix, Front. Chem., 7: 332. Xu, X., Song, K., Guo, J., Liu, S., Zhou X. & He, J. (2023). Adsorption behavior of amino functionalized MCM-41 on chlorogenic acid from Eucommia ulmoides leaves, Journal of Porous Materials, 30: 71–81. Siqueira, T.A., Iglesias R.S. & Ketzer, M.K. (2017). Carbon dioxide injection in carbonate reservoirs – a review of CO2-water-rock interaction studies, Greenhouse Gas Sci Technol., 7 (5): 802-816. Ben Said, R., Kolle, J.M., Essalah, K., Tangour, B. & Sayari, A. (2020). A unified approach to CO2–amine reaction mechanisms, ACS Omega, 5 (40): 26125-26133. | ||
آمار تعداد مشاهده مقاله: 365 تعداد دریافت فایل اصل مقاله: 448 |