تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,514 |
تعداد مشاهده مقاله | 124,130,463 |
تعداد دریافت فایل اصل مقاله | 97,236,850 |
Application of Artificial Neural Network and Multiple Linear Regression for Modelling Adsorptive Removal of Pb (II) ions over Cedrus deodara Bark Powder | ||
Pollution | ||
دوره 10، شماره 1، فروردین 2024، صفحه 528-549 اصل مقاله (2.34 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2023.365500.2076 | ||
نویسندگان | ||
Anurag Samson Lall* 1؛ Avinash Kumar Pandey2؛ Jyoti Vandana Mani1 | ||
1Department of Chemistry, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, 211007, India | ||
2Department of Chemistry, GLA University, Chaumuhan, Mathura, Uttar Pradesh- 281406, India | ||
چکیده | ||
Cedrus deodara is a coniferous tree native to Himalayan region. Its wood is a valuable resource for the timber industry; however, its bark is typically discarded as a waste material. The present study examines the performance of Cedrus deodara bark powder (CD) as an inexpensive adsorbent for elimination of Pb (II) ions. In addition to this multiple linear regression (MLR) and artificial neural network (ANN) models were developed for modelling the adsorption process and prediction of Pb (II) removal efficiency. The structural and chemical properties of CD were explored using Field Emission Scanning Electron Microscope (FE-SEM), Energy Dispersive Spectrometer (EDS), X-Ray Diffractometer (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). Batch experiments were conducted to investigate the influence of factors including pH, contact time, initial Pb (II) concentration and temperature on Pb (II) adsorption. The adsorption followed pseudo-second-order kinetic and Langmuir isotherm models with maximum monolayer uptake capacity 77.52 mg/g. Based on the thermodynamic criteria, the process was endothermic and spontaneous with enthalpy change (ΔH = 8.08 kJ/mol), free energy change (ΔG = -2.44 kJ/mol) and entropy change (ΔS = 0.03 kJ/K/mol). Statistical comparison of MLR model (R2 = 0.817, RMSE = 8.954, MAPE = 17.379 %) and ANN model (R2 = 0.993, RMSE = 1.777, MAPE = 2.054 %) confirmed that ANN model was far more accurate in predicting removal efficiency. | ||
کلیدواژهها | ||
ANN؛ MLR؛ Adsorption؛ Cedrus deodara؛ Lead | ||
مراجع | ||
Abdel-Aty, A. M., Ammar, N. S., Ghafar, H. H. A., & Ali, R. K. (2013). Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. Journal of advanced research, 4(4); 367-374. Ahmad, R., & Hasan, I. (2016). L-cystein modified bentonite-cellulose nanocomposite (cellu/cys-bent) for adsorption of Cu2+, Pb2+, and Cd2+ ions from aqueous solution. Separation science and technology, 51(3); 381-394. Ahmad, R., & Hasan, I. (2017). L-methionine montmorillonite encapsulated guar gum-g-polyacrylonitrile copolymer hybrid nanocomposite for removal of heavy metals. Groundwater for Sustainable Development, 5; 75-84. Argun, M. E., & Dursun, S. (2007). Activation of pine bark surface with NaOH for lead removal. J Int Environ Appl Sci, 2; 5-10. Arris, S., Lehocine, M. B. & Meniai, A. H. (2016). Sorption study of chromium sorption from wastewater using cereal by-products. International Journal of Hydrogen Energy, 41(24); 10299-10310. ATSDR (2019). ATSDR’s substance priority list. Agency for Toxic Substances and Disease Registry. Accessible at https://www.atsdr.cdc.gov/spl Banerjee, S., Kumar, A., Maiti, S. K., & Chowdhury, A. (2016). Seasonal variation in heavy metal contaminations in water and sediments of Jamshedpur stretch of Subarnarekha river, India. Environmental Earth Sciences, 75(3); 1-12. Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4); 361-377. Capobianco, G., Pelosi, C., Agresti, G., Bonifazi, G., Santamaria, U., & Serranti, S. (2018). X-ray fluorescence investigation on yellow pigments based on lead, tin and antimony through the comparison between laboratory and portable instruments. Journal of Cultural Heritage, 29; 19-29. Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J., & Naushad, M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 5(3); 2782-2799. Chakravarty, P., Sarma, N. S., & Sarma, H. P. (2010). Removal of lead (II) from aqueous solution using heartwood of Areca catechu powder. Desalination, 256(1-3); 16-21. Ciesielczyk, F., Bartczak, P., Wieszczycka, K., Siwińska-Stefańska, K., Nowacka, M., & Jesionowski, T. (2013). Adsorption of Ni (II) from model solutions using co-precipitated inorganic oxides. Adsorption, 19(2); 423-434. Coates, J. (2000). Interpretation of infrared spectra, a practical approach. Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.) John Wiley & Sons Ltd. pp. 10815–10837. CWC (Central Water Commission). (2019). Status of trace & toxic metals in Indian rivers. Ministry of Jal Shakti, Department of Water Resources, River Development and Ganga Rejuvenation: New Delhi, India. Accessible at: http://cwc.gov.in/sites/default/files/status-trace-toxic-metals-indian-rivers-2019-2.pdf Das, R., Mukherjee, A., Sinha, I., Roy, K., & Dutta, B. K. (2020). Synthesis of potential bio-adsorbent from Indian Neem leaves (Azadirachta indica) and its optimization for malachite green dye removal from industrial wastes using response surface methodology: kinetics, isotherms and thermodynamic studies. Applied Water Science, 10(5); 1-18. Fauzia, S., Aziz, H., Dahlan, D., & Zein, R. (2018). Study of equilibrium, kinetic and thermodynamic for removal of Pb (II) in aqueous solution using Sago bark (Metroxylon sago). In AIP Conference Proceedings (Vol. 2023, No. 1). AIP Publishing. https://doi.org/10.1063/1.5064078. Fiyadha, S. S., Alardhi, S. M., Al Omar, M., Aljumaily, M. M., Al Saadic, M. A., Fayaedd, S. S., ... & El-Shafie, A. (2023). A comprehensive review on modelling the adsorption process for heavy metal removal from water using artificial neural network technique. Heliyon, 9; e15455. Fomina, M., & Gadd, G. M. (2014). Biosorption: current perspectives on concept, definition and application. Bioresource Technology, 160; 3-14. Fuks, L., Filipiuk, D. & Majdan, M. (2006). Transition metal complexes with alginate biosorbent. Journal of Molecular Structure, 792; 104-109. Gayathri, N.S., Anuradha, J., & Andal, N. M. (2018). Efficacy of modified tree bark in the screening of divalent ions in aqueous media: characterization and isothermal studies. International Journal of Current Engineering and Scientific Research, 5(4); 127-132. Genc, B., & Tunc, H. (2019). Optimal training and test sets design for machine learning. Turkish Journal of Electrical Engineering and Computer Sciences, 27(2); 1534-1545. Grover, M. (2021). An Overview on the Ornamental Coniferous Tree Cedrus deodara (Roxburgh) G. Don (Himalayan Cedar). Journal of Ayurveda and Integrated Medical Sciences, 6(4); 291-302. Gundogdu, A., Ozdes, D., Duran, C., Bulut, V. N., Soylak, M., & Senturk, H. B. (2009). Biosorption of Pb (II) ions from aqueous solution by pine bark (Pinus brutia Ten.). Chemical Engineering Journal, 153(1-3); 62-69. Gupta, G. K., & Mondal, M. K. (2020). Mechanism of Cr (VI) uptake onto sagwan sawdust derived biochar and statistical optimization via response surface methodology. Biomass Conversion and Biorefinery, 2020; 1-17. Hafizoglu, H., & Holmbom, B. (1987). Studies on the chemistry of Cedrus libani A. Rich. II: Lipophilic constituents of the cedar bark. Holzforschung, 41(2); 73-77. Hallinan, J. S. (2013). Computational intelligence in the design of synthetic microbial genetic systems. In Methods in microbiology. Academic Press. Vol. 40, pp. 1-37. Haydar, S., Farooq, M. U., & Gull, S. (2020). Use of grape vine bark as an effective biosorbent for the removal of heavy metals (copper and lead) from aqueous solutions. Desalination and Water Treatment, 183; 307-314. Hwang, K., Kwon, G. J., Yang, J., Kim, M., Hwang, W. J., Youe, W., & Kim, D. Y. (2018). Chlamydomonas angulosa (Green Alga) and Nostoc commune (Blue-Green Alga) microalgae-cellulose composite aerogel beads: manufacture, physicochemical characterization, and Cd (II) adsorption. Materials, 11(4); 562. Ijomah, M. N. C., & Okoyeh, F. N. (1988). Microstructure and deformation resistance of quinary Pb-(Al, Mg, Sn, Li) alloys. Metallography, 21(2); 165-178. Iqbal, M., Iqbal, N., Bhatti, I. A., Ahmad, N., & Zahid, M. (2016). Response surface methodology application in optimization of cadmium adsorption by shoe waste: A good option of waste mitigation by waste. Ecological Engineering, 88; 265-275. Jain, S., Jain, A., Jain, S., Malviya, N., Jain, V., & Kumar, D. (2015). Estimation of total phenolic, tannins, and flavonoid contents and antioxidant activity of Cedrus deodara heart wood extracts. Egyptian Pharmaceutical Journal, 14(1); 10. Junior, A. C. G., Strey, L., Lindino, C. A., Nacke, H., Schwantes, D., & Seidel, E. P. (2012). Applicability of the Pinus bark (Pinus elliottii) for the adsorption of toxic heavy metals from aqueous solutions. Acta Scientiarum. Technology, 34(1); 79-87. Kareem, S. S., & Pathak, Y. (2016). Clinical Applications of Artificial Neural Networks in Pharmacokinetic Modeling. In Artificial Neural Network for Drug Design, Delivery and Disposition, Academic Press. pp. 393-405. Khatoon, A., Uddin, M. K., & Rao, R. A. K. (2018). Adsorptive remediation of Pb (II) from aqueous media using Schleichera oleosa bark. Environmental Technology & Innovation, 11; 1-14. Kulisz, M., Kujawska, J., Przysucha, B., & Cel, W. (2021). Forecasting water quality index in groundwater using artificial neural network. Energies, 14(18); 5875. Kumar, Y., Pradhan, S., Pramanik, S., Bandyopadhyay, R., Das, D. K., & Pramanik, P., (2018). Efficient electrochemical detection of guanine, uric acid and their mixture by composite of nano-particles of lanthanides ortho-ferrite XFeO3 (X= La, Gd, Pr, Dy, Sm, Ce and Tb). Journal of Electroanalytical Chemistry, 830; 95-105. Kumar, Y., Pramanik, P., & Das, D. K. (2019). Electrochemical detection of paracetamol and dopamine molecules using nano-particles of cobalt ferrite and manganese ferrite modified with graphite. Heliyon, 5(7); e02031. Kumar, Y., Vashistha, V. K., & Das, D. K. (2020). Synthesis of Perovskite-type NdFeO3 nanoparticles and used as electrochemical sensor for detection of paracetamol. Lett. Appl. Nanobiosci., 9; 866-869. Kumari, M., Pittman Jr, C. U., & Mohan, D. (2015). Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. Journal of Colloid and Interface Science, 442; 120-132. Kumari, U., Biswas, S., & Meikap, B. C. (2020). Defluoridation characteristics of a novel adsorbent developed from ferroalloy electric arc furnace slag: Batch, column study and treatment of industrial wastewater. Environmental Technology & Innovation, 18; 100782. Lee, S., & Choi, W. S. (2013). A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis. Expert Systems with Applications, 40(8); 2941-2946. Liang, S., Guo, X., Lautner, S., & Saake, B. (2014). Removal of hexavalent chromium by different modified spruce bark adsorbents. Journal of Wood Chemistry and Technology, 34(4); 273-290. Liang, W., Wang, J.J., Gaston, L.A., Huang, D., Huang, H., Lei, S., Awasthi, M.K., Zhou, B., Xiao, R., Zhang, Z. (2018). Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash. Journal of Environmental Management, 212; 77–87. Litefti, K., Freire, M. S., Stitou, M., & González-Álvarez, J. (2019). Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark. Scientific Reports, 9(1); 1-11. Medhi, H., Chowdhury, P. R., Baruah, P. D., & Bhattacharyya, K. G. (2020). Kinetics of aqueous Cu (II) biosorption onto Thevetia peruviana leaf powder. ACS Omega, 5(23); 13489-13502. Mittal, A., Ahmad, R., & Hasan, I. (2016 a). Poly (methyl methacrylate)-grafted alginate/Fe3O4 nanocomposite: synthesis and its application for the removal of heavy metal ions. Desalination and Water Treatment, 57(42); 19820-19833. Mittal, A., Ahmad, R., & Hasan, I. (2016 b). Biosorption of Pb2+, Ni2+ and Cu2+ ions from aqueous solutions by L-cystein-modified montmorillonite-immobilized alginate nanocomposite. Desalination and Water Treatment, 57(38); 17790-17807. Naiya, T. K., Bhattacharya, A. K., & Das, S. K. (2008). Adsorption of Pb (II) by sawdust and neem bark from aqueous solutions. Environmental Progress, 27(3); 313-328. Nuhoglu, Y., & Malkoc, E. (2009). Thermodynamic and kinetic studies for environmentaly friendly Ni (II) biosorption using waste pomace of olive oil factory. Bioresource Technology, 100(8); 2375-2380. Park, J. H., & Lee, J. K. (2020). Weathered Sand of Basalt as a Potential Nickel Adsorbent. Processes, 8(10); 1238. Politi, D. & Sidiras, D. (2020). Modified spruce sawdust for sorption of hexavalent chromium in batch systems and fixed-bed columns. Molecules, 25(21); 5156. Pradhan, S., Biswas, S., Das, D. K., Bhar, R., Bandyopadhyay, R., & Pramanik, P., (2018). An efficient electrode for simultaneous determination of guanine and adenine using nano-sized lead telluride with graphene. New Journal of Chemistry, 42(1); 564-573. Rajput, S., Pittman Jr, C. U., & Mohan, D. (2016). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468; 334-346. Reddy, D. H. K., Ramana, D. K. V., Seshaiah, K., & Reddy, A. V. R. (2011). Biosorption of Ni (II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent. Desalination, 268(1-3); 150-157. Reddy, D. H. K., Seshaiah, K., Reddy, A. V. R., Rao, M. M., & Wang, M. C. (2010). Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: equilibrium and kinetic studies. Journal of Hazardous Materials, 174(1-3); 831-838. Sahmoune, M. N. (2019). Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents. Environmental Chemistry Letters, 17(2); 697-704. Salawu, O. A., Han, Z., & Adeleye, A. S. (2022). Shrimp Waste-derived Porous Carbon Adsorbent: Performance, Mechanism, and Application of Machine Learning. Journal of Hazardous Materials, 437; 129266-129271. Sazli, M. H. (2006). A brief review of feed-forward neural networks. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 50(01). Şen, A., Pereira, H., Olivella, M. A., & Villaescusa, I. (2015). Heavy metals removal in aqueous environments using bark as a biosorbent. International Journal of Environmental Science and Technology, 12(1); 391-404. Shooto, N. D., Thabede, P. M., Bhila, B., Moloto, H., & Naidoo, E. B. (2020). Lead ions and methylene blue dye removal from aqueous solution by Mucuna beans (velvet beans) adsorbents. Journal of Environmental Chemical Engineering, 8(2); 103557. Siddiqui, S. H. (2018). The removal of Cu2+, Ni2+ and methylene blue (MB) from aqueous solution using Luffa Actangula carbon: kinetics, thermodynamic and isotherm and response methodology. Groundwater For Sustainable Development, 6; 141-149. Srivastava, S., Agrawal, S. B., & Mondal, M. K. (2017). Synthesis, characterization and application of Lagerstroemia speciosa embedded magnetic nanoparticle for Cr (VI) adsorption from aqueous solution. Journal of Environmental Sciences, 55; 283-293. Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions–A review. Bioresource technology, 99(14); 6017-6027. Syahrullah, L. O. I., & Sinaga, N. (2016). Optimization and prediction of motorcycle injection system performance with feed-forward back-propagation method Artificial Neural Network (ANN). American Journal of Engineering and Applied Science, 9(2); 222-235. Taoufik, N., Elmchaouri, A., El Mahmoudi, S., Korili, S. A., & Gil, A. (2021). Comparative analysis study by response surface methodology and artificial neural network on salicylic acid adsorption optimization using activated carbon. Environmental Nanotechnology, Monitoring & Management, 15; 100448. Teshager, F. M., Habtu, N. G., & Mequanint, K. (2022). A systematic study of cellulose-reactive anionic dye removal using a sustainable bioadsorbent. Chemosphere, 303; 135024. Vazquez, G., Gonzalez-Alvarez, J., Freire, S., López-Lorenzo, M., & Antorrena, G. (2002). Removal of cadmium and mercury ions from aqueous solution by sorption on treated Pinus pinaster bark: kinetics and isotherms. Bioresource Technology, 82(3); 247-251. Wilamowski, B. M. & Yu, H. (2010). Improved computation for Levenberg-Marquardt algorithm training. IEEE Transactions on Neural Network, 21 (6); 930–937. Wu, Q., Xian, Y., He, Z., Zhang, Q., Wu, J., Yang, G., & Long, L. (2019). Adsorption characteristics of Pb (II) using biochar derived from spent mushroom substrate. Scientific Reports, 9(1); 1-11. Xie, Y., Hu, W., Zhou, X., Yan, S., & Li, C. (2022). Artificial Neural Network Modeling for Predicting and Evaluating the Mean Radiant Temperature around Buildings on Hot Summer Days. Buildings, 12(5); 513. Yetilmezsoy, K., & Demirel, S. (2008). Artificial neural network (ANN) approach for modeling of Pb (II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells. Journal of hazardous materials, 153(3); 1288-1300. Zhang, B., Han, X., Gu, P., Fang, S., & Bai, J. (2017). Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk. Journal of Molecular Liquids, 238; 316-325. | ||
آمار تعداد مشاهده مقاله: 258 تعداد دریافت فایل اصل مقاله: 445 |