
تعداد نشریات | 163 |
تعداد شمارهها | 6,824 |
تعداد مقالات | 73,560 |
تعداد مشاهده مقاله | 134,676,602 |
تعداد دریافت فایل اصل مقاله | 105,204,809 |
Impact of Management and Nutrition on HSP70 Gene Expression in Heat-stressed Dairy Cows | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 13، دوره 18، شماره 4، دی 2024، صفحه 599-612 اصل مقاله (1.41 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.18.4.1005388 | ||
نویسندگان | ||
Pourya Molaee Berneti1؛ Ali Mahdavi* 1؛ Yadollah Chashnidel2؛ Mohammad Hasan Yousefi3؛ Reza Narenji Sani4؛ Ayoub Farhadi2 | ||
1Department of Animal Nutrition, Rearing and Breeding, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran. | ||
2Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran. | ||
3Department of Basic Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran. | ||
4Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran. | ||
چکیده | ||
Background: This research investigated the effects of management and nutrition strategies on dairy cows under heat stress. Objectives: We aimed to evaluate the effects of zinc mineral supplementation and mist spray, alone and in combination, on yield, milk production and composition, blood parameters and HSP70 gene expression in dairy cows. Methods: Sixteen Holstein lactating cows were used for our experiment in four treatment groups: Basal diet without heat stress alleviation methods (control), zinc supplementation in diet, basal diet and application of mist spray method and supplementation of zinc in basal diet with mist spray. We measured milk production and composition, blood parameters and HSP70 gene expression in all cows. Results: The results showed that the cows in the mist and zinc+mist treatments had significantly better performance and temperature-humidity index than the control group. The milk yield and its compounds were significantly affected by experimental treatments, with the best results seen in the treatment with both spray and zinc. The cows exposed to dry and lactation periods showed a significant increase in the concentration of blood biochemical factors and antioxidant indices in response to heat stress. HSP70 gene expression was significantly decreased in all treatments compared to the control. Conclusion: This experiment suggests that applying nutritional and management strategies can effectively mitigate the effects of heat stress on dairy cows. The study recommends using zinc supplementation and mist spray to alleviate heat stress effectively. Overall, this study highlights the importance of implementing management and nutrition strategies to improve the welfare and productivity of dairy cows under heat stress. | ||
کلیدواژهها | ||
Heat stress؛ Milk composition؛ Mist spray؛ Performance؛ Zinc | ||
اصل مقاله | ||
Introduction
After formulating the ration, samples were collected from various points to analyze and verify the uniform and homogeneous distribution of zinc and other essential nutrients within the feed (Khorrami et al., 2022). Experimental treatments included treatment with basal diet without heat stress alleviation methods (control), treatment fed by mineral zinc supplementation in basal diet (75 mg/kg feed), treatment with the base diet using mist spray method, and treatment fed by the addition of mineral zinc supplement to the base diet (75 mg/kg feed) and mist spray system (Marins et al., 2020).
Alamian, S., Bahreinipour, A., Amiry, K., & Dadar, M. (2023).The control program of brucellosis by the Iranian Veterinary Organization in Industrial Dairy Cattle Farms. Archives of Razi Institute, 78(3), 1107-1114. [PMID] Ballantine, H. T., Socha, M. T., Tomlinson, J., Johnson, A. B., Fielding, A. S., & Shearer, J. K., et al. (2002). Effects of feeding complexed zinc, manganese, copper, and cobalt to late gestation and lactating dairy cows on claw integrity, reproduction, and lactation performance. The Professional Animal Scientist, 18(3), 211-218. [DOI:10.15232/S1080-7446(15)31524-2] Bernabucci, U., Ronchi, B., Lacetera, N., & Nardone, A. (2002). Markers of oxidative status in plasma and erythrocytesof transition dairy cows during hot season. Journal of Dairy Science, 85(9), 2173-2179. [DOI:10.3168/jds.S0022-0302(02)74296-3] [PMID] Brito, L. F., Oliveira, H. R., McConn, B. R., Schinckel, A. P., Arrazola, A., & Marchant-Forde, J. N., et al. (2020). Large-scale phenotyping of livestock welfare in commercial production systems: A new frontier in animal breeding. Frontiers in Genetics, 11, [DOI:10.3389/fgene.2020.00793] [PMID] [PMCID] Charpentier, A., & Delagarde, R. (2018). Milk production and grazing behavior responses of Alpine dairy goats to daily access time to pasture or to daily pasture allowance on temperature pastures in spring. Small Ruminant Research, 162, 48-56. [DOI:10.1016/j.smallrumres.2018.03.004] Collier, R. J., Collier, J. L., Rhoads, R. P., & Baumgard, L. H. (2008). Invited review: Genes involved in the bovine heat stress response. Journal of Dairy Science, 91(2), 445-454. [DOI:10.3168/jds.2007-0540] [PMID] Cowley, F. C., Barber, D. G., Houlihan, A. V., & Poppi, D. P. (2015). Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism. Journal of Dairy Science, 98(4), 2356-2368. [PMID] Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., & Imtiwati, et al. (2016). Impact of heat stress on health and performance of dairy animals: A review. Veterinary World, 9(3), 260–268.[DOI:10.14202/vetworld.2016.260-268] [PMID] [PMCID] Dash, S., Chakravarty, A. K., Singh, A., Upadhyay, A., Singh, M., & Yousuf, S. (2016). Effect of heat stress on reproductive performances of dairy cattle and buffaloes: A review. Veterinary World, 9(3), 235-244. [DOI:10.14202/vetworld.2016.235-244] [PMID] [PMCID] Dehghan-Banadaky, M., Ebrahimi, M., Motameny, R. & Heidari, SR. (2013). Effects of live yeast supplementation on mid-lactation dairy cow’s performances, milk composition, rumen digestion and plasma metabolites during hot season. Journal of Applied Animal Research, 41 (2):137-142. [DOI: 10.1080/09712119.2012.739085] Duffield, T. F. (2006). Minimizing sunclinical metabolic diseases in dairy cows. WCDS Advances in Dairy Technology, 18, 43-55. [Link] Dufresne, C. J., & Farnworth, E. R. (2001). A review of latest research findings on the health promotion properties of tea. The Journal of Nutritional Biochemistr, 12(7), 404-421. [DOI:10.1016/S0955-2863(01)00155-3] [PMID] El-Gindy, Y. M., Zahran, S. M., Ahmed, M. H., Ali, A. M., Mohamed, A. Z., & Morshedy, S. A. (2023). Counteract severe heat stress by including different forms of zinc in the rabbit bucks’ diet. Scientific Reports, 13(1), 12987. [DOI:10.1038/s41598-023-39928-3] [PMID] [PMCID] Falah, S. M., Abd Al-Bar, A, A. F., & Hadeel, M. H. (2023). Influence of Nano-zinc oxide and zinc sulfate on some hematological values and liver function in broiler under high ambient temperature. Egyptian Journal of Veterinary Sciences, 54(3), 491-501. [DOI:10.21608/ejvs.2023.191733.1439] Febbraio, M. A., & Koukoulas, I. (2000). HSP72 gene expression progressively increases in human skeletal muscle during prolonged, exhaustive exercise. Journal of Applied Physiology, 89 (3), 1055-1060. [DOI:10.1152/jappl.2000.89.3.1055] [PMID] Garcia, A. B., Angeli, N., Machado, L., de Cardoso, F. C., & Gonzalez, F. (2015). Relationships between heat stress and metabolic and milk parameters in dairy cows in Southern Brazil. Tropical Animal Health and Production, 47(5), 889-894. [DOI:10.1007/s11250-015-0804-9] [PMID] Genther, O. N., & Hansen, S. L. (2015). The effect of trace mineral source and concentration on ruminal digestion and mineral solubility. Journal of Dairy Science, 98(1), 566-573. [DOI:10.3168/jds.2014-8624] [PMID] Griffiths, L. M., Loeffler, S. H., Socha, M. T., Tomlinson, D. J., & Johnson, A. B. (2007). Effects of supplementing complexed zinc, manganese, copper and cobalt on lactation and reproductive performance of intensively grazed lactating dairy cattle on the South Island of New Zealand. Animal Feed Science and Technology, 137(1-2), 69-83. [DOI:10.1016/j.anifeedsci.2006.10.006] Hackbart, K. S., Ferreira, R. M., Dietsche, A. A., Socha, M. T., Shaver, R. D., & Wiltbank, M. C., et al. (2010). Effect of dietary organic zinc, manganese, copper, and cobalt supplementation on milk production, follicular growth, embryo quality, and tissue mineral concentrations in dairy cows. Journal of Animal Science, 88(12), 3856-3870. [DOI:10.2527/jas.2010-3055] [PMID] Hill, D. L., & Wall, E. (2015). Dairy cattle in a temperate climate: The effects of weather on milk yield and composition depend on ma Animal, 9(1), 138-149. [DOI:10.1017/S1751731114002456] [PMID] Ingvartsen, K. L., & Moyes, K. (2013). Nutrition, immune function and health of dairy cattle. Animal, 7(Suppl 1), 112–122.[DOI:10.1017/S175173111200170X] [PMID] Jyotiranjan, T., Mohapatra, S., Mishra, C., Dalai, N., & Kundu, A. K. (2017). Heat tolerance in goat-A genetic update. The Pharma Innovation Journal, 6(9), 237-245. [Link] Karis, P., Jaakson, H., Ling, K., Bruckmaier, R. M., Gross, J. J., & Pärn, P., et al. (2020). Body condition and insulin resistance interactions with periparturient gene expression in adipose tissue and lipid metabolism in dairy cows. Journal of Dairy Science, 103(4), 3708-3718. [DOI:10.3168/jds.2019-17373] [PMID] Ghasemian Karyak, O., Safi, S., Rahimi Froushani, A., & Bolourchi, M. (2011). Study of the relationship between oxidative stress and subclinical mastitis in dairy cattle. Iranian Journal of Veterinary Research, 12(4), 350-353. [DOI:10.22099/IJVR.2011.89] Kellogg, D. W., Tomlinson, D. J., Socha, M. T. & Johnson, A. B. (2004). Review: Effects of zinc methionine complex on milk production and somatic cell count of dairy cows: Twelve-trial summary. The Professional Animal Scientist, 20(4), 295-301. [DOI:10.15232/S1080-7446(15)31318-8] Khorrami, R., Pooyanmehr, M., Soroor, M. E. N., & Gholami, S. (2022). Evaluation of some aflatoxins in feed ingredients of livestock and poultry by HPLC Method, a local study in Kermanshah Province. Iranian Journal of Veterinary Medicine, 16(3), 298-310. [Link] Koohkan, O., Morovvati, H., & Taheri Mirghaed, A. (2023). Effects of Spirulina platensis on Iron Oxide Nanoparticles Induced-oxidative Stress and Liver Damage in Grey Mullet (Mugil cephalus). Iranian Journal of Veterinary Medicine, 17(1), 75-86. [DOI:10.32598/IJVM.17.1.1005284] Khorsandi, S., Riasi, A., Khorvash, M., Mahyari, S. A., Mohammadpanah, F., & Ahmadi, F. (2016). Lactation and reproductive performance of high producing dairy cows given sustainedrelease multi-trace element/vitamin ruminal bolus under heat stress condition. Livestock Science, 187, 146-150. [DOI:10.1016/j.livsci.2016.03.008] Livak KJ, Schmittgen TD. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Method, 25(4), 402-408. [DOI: 10.1006/meth.2001.1262][PMID] Lees, A. M., Sejian, V., Wallage, A. L., Steel, C. C., Mader, T. L., & Lees, J. C., et al. (2019). The impact of heat load on cattle. Animals, 9(6), 322. [DOI:10.3390/ani9060322] [PMID] [PMCID] Marins, T. N., Monteiro, A. P. A., Weng, X., Guo, J., Orellana Rivas, R. M., & Bernard, J. K., et al. (2020). Response of lactating dairy cows fed different supplemental zinc sources with and without evaporative cooling to intramammary lipopolysaccharide infusion: Metabolite and mineral profiles in blood and milk. Journal of Animal Science, 98(10), skaa323.[DOI:10.1093/jas/skaa323] [PMID] [PMCID] Melo, R. P., Castro, L. P., Cardoso, F. F., Barbosa, E. F., Melo, L. Q., & Silva, R. B., et al. (2016). Supplementation of palm oil to lactating dairy cows fed a high fat diet during summer. Journal of Animal Science, 94(5), 640-641. [Link] Mota-Rojas, D., Titto, C. G., Orihuela, A., Martínez-Burnes, J., Gómez-Prado, J., & Torres-Bernal, F., et al. (2021). Physiological and behavioral mechanisms of thermoregulation in mammals. Animals, 11(6), 1733. [DOI:10.3390/ani11061733] [PMID] [PMCID] Nzeyimana, J. B., Fan, C., Zhuo, Z., Butore, J., & Cheng, J. (2023). Heat stress effects on the lactation performance, reproduction, and alleviating nutritional strategies in dairy cattle, a review. Journal of Animal Behaviour and Biometeorology, 11(3), e2023018. [Link] Padmini, E & Usha Rani, M. (2008). Impact of seasonal variation on HSP70 expression quantitated in stressed fish hepatocytes. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 151(3), 278-285. [DOI: 10.1016/j.cbpb.2008.07.011] [PMID] Rhoads, M. L., Rhoads, R. P., VanBaale, M. J., Collier, R. J., Sanders, S. R., & Weber, W. J., et a (2009). Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. Journal of Dairy Science, 92(5), 1986-1997. [DOI:10.3168/jds.2008-1641] [PMID] Sadeghi-nasab, A., Mahra, F., Solgi, R., Nourian, A., & Bahari, A. (2021). Zinc phosphide intoxication in three horses: A case report. Iranian Journal of Veterinary Medicine, 15(2), 254-259. [DOI:10.22059/IJVM.2020.302634.1005088] Sahin, K., Smith, M. O., Onderci, M., Sahin, N., Gursu, M. F., & Kucuk, O. (2005). Supplementation of zinc from organic or inorganic source improves performance and antioxidant status of heat-distressed quail. Poultry Science, 84(6), 882-887. [DOI:10.1093/ps/84.6.882] [PMID] Salam Karim, Y., Hachim, S., Abdul Ali, A., Ameen Baqer, A., Ali Yaseen, M., & Lafta, H. A., et al. (2022). The influence of rumen-protected choline and α-tocopherol supplementation on early lactating dairy cows metabolism. Archives of Razi Institute, 77(3), 1165-1171. [PMID] Santana, M. L., Jr, Bignardi, A. B., Pereira, R. J., Menéndez-Buxadera, A., & El Faro, L. (2016). Random regression models to account for the effect of genotype by environment interaction due to heat stress on the milk yield of Holstein cows under tropical co Journal of Applied Genetics, 57(1), 119-127. [DOI:10.1007/s13353-015-0301-x] [PMID] Savsani, H. H., Padodara, R. J., Bhadaniya, A. R., Kalariya, V. D., Javia, B. B., & Ghodasara, S. N., et al. (2015). Impact of climate on feeding, production and reproduction of animals-A review. Agricultural Reviews, 36(1), 26-36. [DOI:10.5958/0976-0741.2015.00003.3] Schneider, W. (1988). Micro experimental laboratory: An integrated system for IBM PC compatibles. Behavior Research Methods, Instruments, & Computers, 20(2), 206-217. [DOI:10.3758/BF03203833] Shahsavari, M., Norouzi, P., Kalalianmoghaddam, H., & Teimouri, M. (2023). Effects of kudzu root on oxidative stress and inflammation in streptozotocin-induced diabetic rats. Iranian Journal of Veterinary Medicine, 17(4), 401-408. [DOI:10.32598/IJVM.17.4.1005281] Shiao, T. F., Chen, J. C., Yang, D. W., Lee, S. N., Lee, C. F., & Cheng, W. T. K. (2011). Feasibility assessment of a tunnel-ventilated, water-padded barn on alleviation of heat stress for lactating Holstein cows in a humid area. Journal of Dairy Science, 94(11), 5393-5404. [DOI: 10.3168/jds.2010-3730] [PMID] Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA & Furth SL. (2009). New equations to estimate GFR in children with CKD. Journal of the American Society of NephrologyM 20(3), 629-37. [DOI: 10.1681/ASN.2008030287] [PMID] Shwartz, G., Rhoads, M. L., VanBaale, M. J., Rhoads, R. P., & Baumgard, L. H. (2009). Effects of a supplemental yeast culture on heat-stressed lactating Holstein cows. Journal of Dairy Science, 92(3), 935-942. [DOI:10.3168/jds.2008-1496] [PMID] Smith, J. F., & Harner III, J. P. (2012). [Strategies to reduce the impact of heat and cold stress in dairy cattle facilities]. In: R. J Collier ., & J.L, Collier (Eds). Environmental Physiology of Livestock, 267-288. Hoboken: John Wiley & Sons. [DOI: 10.1002/9781119949091.ch15] Somvanshi, S., Kaur, N., Paul, S. P., Sharma, D., Singh, E., & Majidkhan, A. (2018). Nutritional and shelter management practices to combat heat stress in dairy animals. A Review. Progressive Research - An International Journal Society for Scientific Development, 13, 569-5 [Link] Stelwagen, K., & Singh, K. (2014). The role of tight junctions in mammary gland function. Journal of Mammary gland Biology and Neoplasia, 19(1), 131-138. [DOI:10.1007/s10911-013-9309-1] [PMID] Weng, X., Monteiro, A. P. A., Guo, J., Li, C., Orellana, R. M., & Marins, T. N., et al. (2018). Effects of heat stress and dietary zinc source on performance and mammary epithelial integrity of lactating dairy cows. Journal of Dairy Science, 101 (3), 2617-2630. [DOI:10.3168/jds.2017-13484] [PMID] West, J. (2003). Effects of heat stress on production in dairy cattle. Journal of Dairy Science, 86(6), 2131-2144. [DOI:10.3168/jds.S0022-0302(03)73803-X] [PMID] Wheelock, J. B., Rhoads, R. P., Vanbaale, M. J., Sanders, S. R., & Baumgard, L. H. (2010). Effects of heat stress on energetic metabolism in lactating Holstein cows. Journal of Dairy Science, 93(2), 644-655. [DOI:10.3168/jds.2009-2295] [PMID] York, L., Heffernan, C., Rymer, C., & Panda, N. (2017). A deterministic evaluation of heat stress mitigation and feed cost under climate change within the smallholder dairy sector. Animal, 11(5), 900-909. [DOI:10.1017/S1751731116002706] [PMID] Zaghari, M., Mehrvarz, H., Hajati, H., & Moravej, H. (2022). Evaluation of an Innovative Zn source on feed efficiency, growth performance, skin and bone quality of broilers suffering heat stress. Animals (Basel), 12(23), 3272. [DOI:10.3390/ani12233272] [PMID] [PMCID] | ||
مراجع | ||
Alamian, S., Bahreinipour, A., Amiry, K., & Dadar, M. (2023).The control program of brucellosis by the Iranian Veterinary Organization in Industrial Dairy Cattle Farms. Archives of Razi Institute, 78(3), 1107-1114. [PMID]
Ballantine, H. T., Socha, M. T., Tomlinson, J., Johnson, A. B., Fielding, A. S., & Shearer, J. K., et al. (2002). Effects of feeding complexed zinc, manganese, copper, and cobalt to late gestation and lactating dairy cows on claw integrity, reproduction, and lactation performance. The Professional Animal Scientist, 18(3), 211-218. [DOI:10.15232/S1080-7446(15)31524-2]
Bernabucci, U., Ronchi, B., Lacetera, N., & Nardone, A. (2002). Markers of oxidative status in plasma and erythrocytesof transition dairy cows during hot season. Journal of Dairy Science, 85(9), 2173-2179. [DOI:10.3168/jds.S0022-0302(02)74296-3] [PMID]
Brito, L. F., Oliveira, H. R., McConn, B. R., Schinckel, A. P., Arrazola, A., & Marchant-Forde, J. N., et al. (2020). Large-scale phenotyping of livestock welfare in commercial production systems: A new frontier in animal breeding. Frontiers in Genetics, 11, [DOI:10.3389/fgene.2020.00793] [PMID] [PMCID]
Charpentier, A., & Delagarde, R. (2018). Milk production and grazing behavior responses of Alpine dairy goats to daily access time to pasture or to daily pasture allowance on temperature pastures in spring. Small Ruminant Research, 162, 48-56. [DOI:10.1016/j.smallrumres.2018.03.004]
Collier, R. J., Collier, J. L., Rhoads, R. P., & Baumgard, L. H. (2008). Invited review: Genes involved in the bovine heat stress response. Journal of Dairy Science, 91(2), 445-454. [DOI:10.3168/jds.2007-0540] [PMID]
Cowley, F. C., Barber, D. G., Houlihan, A. V., & Poppi, D. P. (2015). Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism. Journal of Dairy Science, 98(4), 2356-2368. [PMID]
Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., & Imtiwati, et al. (2016). Impact of heat stress on health and performance of dairy animals: A review. Veterinary World, 9(3), 260–268.[DOI:10.14202/vetworld.2016.260-268] [PMID] [PMCID]
Dash, S., Chakravarty, A. K., Singh, A., Upadhyay, A., Singh, M., & Yousuf, S. (2016). Effect of heat stress on reproductive performances of dairy cattle and buffaloes: A review. Veterinary World, 9(3), 235-244. [DOI:10.14202/vetworld.2016.235-244] [PMID] [PMCID]
Dehghan-Banadaky, M., Ebrahimi, M., Motameny, R. & Heidari, SR. (2013). Effects of live yeast supplementation on mid-lactation dairy cow’s performances, milk composition, rumen digestion and plasma metabolites during hot season. Journal of Applied Animal Research, 41 (2):137-142. [DOI: 10.1080/09712119.2012.739085]
Duffield, T. F. (2006). Minimizing sunclinical metabolic diseases in dairy cows. WCDS Advances in Dairy Technology, 18, 43-55. [Link]
Dufresne, C. J., & Farnworth, E. R. (2001). A review of latest research findings on the health promotion properties of tea. The Journal of Nutritional Biochemistr, 12(7), 404-421. [DOI:10.1016/S0955-2863(01)00155-3] [PMID]
El-Gindy, Y. M., Zahran, S. M., Ahmed, M. H., Ali, A. M., Mohamed, A. Z., & Morshedy, S. A. (2023). Counteract severe heat stress by including different forms of zinc in the rabbit bucks’ diet. Scientific Reports, 13(1), 12987. [DOI:10.1038/s41598-023-39928-3] [PMID] [PMCID]
Falah, S. M., Abd Al-Bar, A, A. F., & Hadeel, M. H. (2023). Influence of Nano-zinc oxide and zinc sulfate on some hematological values and liver function in broiler under high ambient temperature. Egyptian Journal of Veterinary Sciences, 54(3), 491-501. [DOI:10.21608/ejvs.2023.191733.1439]
Febbraio, M. A., & Koukoulas, I. (2000). HSP72 gene expression progressively increases in human skeletal muscle during prolonged, exhaustive exercise. Journal of Applied Physiology, 89 (3), 1055-1060. [DOI:10.1152/jappl.2000.89.3.1055] [PMID]
Garcia, A. B., Angeli, N., Machado, L., de Cardoso, F. C., & Gonzalez, F. (2015). Relationships between heat stress and metabolic and milk parameters in dairy cows in Southern Brazil. Tropical Animal Health and Production, 47(5), 889-894. [DOI:10.1007/s11250-015-0804-9] [PMID]
Genther, O. N., & Hansen, S. L. (2015). The effect of trace mineral source and concentration on ruminal digestion and mineral solubility. Journal of Dairy Science, 98(1), 566-573. [DOI:10.3168/jds.2014-8624] [PMID]
Griffiths, L. M., Loeffler, S. H., Socha, M. T., Tomlinson, D. J., & Johnson, A. B. (2007). Effects of supplementing complexed zinc, manganese, copper and cobalt on lactation and reproductive performance of intensively grazed lactating dairy cattle on the South Island of New Zealand. Animal Feed Science and Technology, 137(1-2), 69-83. [DOI:10.1016/j.anifeedsci.2006.10.006]
Hackbart, K. S., Ferreira, R. M., Dietsche, A. A., Socha, M. T., Shaver, R. D., & Wiltbank, M. C., et al. (2010). Effect of dietary organic zinc, manganese, copper, and cobalt supplementation on milk production, follicular growth, embryo quality, and tissue mineral concentrations in dairy cows. Journal of Animal Science, 88(12), 3856-3870. [DOI:10.2527/jas.2010-3055] [PMID]
Hill, D. L., & Wall, E. (2015). Dairy cattle in a temperate climate: The effects of weather on milk yield and composition depend on ma Animal, 9(1), 138-149. [DOI:10.1017/S1751731114002456] [PMID]
Ingvartsen, K. L., & Moyes, K. (2013). Nutrition, immune function and health of dairy cattle. Animal, 7(Suppl 1), 112–122.[DOI:10.1017/S175173111200170X] [PMID]
Jyotiranjan, T., Mohapatra, S., Mishra, C., Dalai, N., & Kundu, A. K. (2017). Heat tolerance in goat-A genetic update. The Pharma Innovation Journal, 6(9), 237-245. [Link]
Karis, P., Jaakson, H., Ling, K., Bruckmaier, R. M., Gross, J. J., & Pärn, P., et al. (2020). Body condition and insulin resistance interactions with periparturient gene expression in adipose tissue and lipid metabolism in dairy cows. Journal of Dairy Science, 103(4), 3708-3718. [DOI:10.3168/jds.2019-17373] [PMID]
Ghasemian Karyak, O., Safi, S., Rahimi Froushani, A., & Bolourchi, M. (2011). Study of the relationship between oxidative stress and subclinical mastitis in dairy cattle. Iranian Journal of Veterinary Research, 12(4), 350-353. [DOI:10.22099/IJVR.2011.89]
Kellogg, D. W., Tomlinson, D. J., Socha, M. T. & Johnson, A. B. (2004). Review: Effects of zinc methionine complex on milk production and somatic cell count of dairy cows: Twelve-trial summary. The Professional Animal Scientist, 20(4), 295-301. [DOI:10.15232/S1080-7446(15)31318-8]
Khorrami, R., Pooyanmehr, M., Soroor, M. E. N., & Gholami, S. (2022). Evaluation of some aflatoxins in feed ingredients of livestock and poultry by HPLC Method, a local study in Kermanshah Province. Iranian Journal of Veterinary Medicine, 16(3), 298-310. [Link]
Koohkan, O., Morovvati, H., & Taheri Mirghaed, A. (2023). Effects of Spirulina platensis on Iron Oxide Nanoparticles Induced-oxidative Stress and Liver Damage in Grey Mullet (Mugil cephalus). Iranian Journal of Veterinary Medicine, 17(1), 75-86. [DOI:10.32598/IJVM.17.1.1005284]
Khorsandi, S., Riasi, A., Khorvash, M., Mahyari, S. A., Mohammadpanah, F., & Ahmadi, F. (2016). Lactation and reproductive performance of high producing dairy cows given sustainedrelease multi-trace element/vitamin ruminal bolus under heat stress condition. Livestock Science, 187, 146-150. [DOI:10.1016/j.livsci.2016.03.008]
Livak KJ, Schmittgen TD. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Method, 25(4), 402-408. [DOI: 10.1006/meth.2001.1262][PMID]
Lees, A. M., Sejian, V., Wallage, A. L., Steel, C. C., Mader, T. L., & Lees, J. C., et al. (2019). The impact of heat load on cattle. Animals, 9(6), 322. [DOI:10.3390/ani9060322] [PMID] [PMCID]
Marins, T. N., Monteiro, A. P. A., Weng, X., Guo, J., Orellana Rivas, R. M., & Bernard, J. K., et al. (2020). Response of lactating dairy cows fed different supplemental zinc sources with and without evaporative cooling to intramammary lipopolysaccharide infusion: Metabolite and mineral profiles in blood and milk. Journal of Animal Science, 98(10), skaa323.[DOI:10.1093/jas/skaa323] [PMID] [PMCID]
Melo, R. P., Castro, L. P., Cardoso, F. F., Barbosa, E. F., Melo, L. Q., & Silva, R. B., et al. (2016). Supplementation of palm oil to lactating dairy cows fed a high fat diet during summer. Journal of Animal Science, 94(5), 640-641. [Link]
Mota-Rojas, D., Titto, C. G., Orihuela, A., Martínez-Burnes, J., Gómez-Prado, J., & Torres-Bernal, F., et al. (2021). Physiological and behavioral mechanisms of thermoregulation in mammals. Animals, 11(6), 1733. [DOI:10.3390/ani11061733] [PMID] [PMCID]
Nzeyimana, J. B., Fan, C., Zhuo, Z., Butore, J., & Cheng, J. (2023). Heat stress effects on the lactation performance, reproduction, and alleviating nutritional strategies in dairy cattle, a review. Journal of Animal Behaviour and Biometeorology, 11(3), e2023018. [Link]
Padmini, E & Usha Rani, M. (2008). Impact of seasonal variation on HSP70 expression quantitated in stressed fish hepatocytes. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 151(3), 278-285. [DOI: 10.1016/j.cbpb.2008.07.011] [PMID]
Rhoads, M. L., Rhoads, R. P., VanBaale, M. J., Collier, R. J., Sanders, S. R., & Weber, W. J., et a (2009). Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. Journal of Dairy Science, 92(5), 1986-1997. [DOI:10.3168/jds.2008-1641] [PMID]
Sadeghi-nasab, A., Mahra, F., Solgi, R., Nourian, A., & Bahari, A. (2021). Zinc phosphide intoxication in three horses: A case report. Iranian Journal of Veterinary Medicine, 15(2), 254-259. [DOI:10.22059/IJVM.2020.302634.1005088]
Sahin, K., Smith, M. O., Onderci, M., Sahin, N., Gursu, M. F., & Kucuk, O. (2005). Supplementation of zinc from organic or inorganic source improves performance and antioxidant status of heat-distressed quail. Poultry Science, 84(6), 882-887. [DOI:10.1093/ps/84.6.882] [PMID]
Salam Karim, Y., Hachim, S., Abdul Ali, A., Ameen Baqer, A., Ali Yaseen, M., & Lafta, H. A., et al. (2022). The influence of rumen-protected choline and α-tocopherol supplementation on early lactating dairy cows metabolism. Archives of Razi Institute, 77(3), 1165-1171. [PMID]
Santana, M. L., Jr, Bignardi, A. B., Pereira, R. J., Menéndez-Buxadera, A., & El Faro, L. (2016). Random regression models to account for the effect of genotype by environment interaction due to heat stress on the milk yield of Holstein cows under tropical co Journal of Applied Genetics, 57(1), 119-127. [DOI:10.1007/s13353-015-0301-x] [PMID]
Savsani, H. H., Padodara, R. J., Bhadaniya, A. R., Kalariya, V. D., Javia, B. B., & Ghodasara, S. N., et al. (2015). Impact of climate on feeding, production and reproduction of animals-A review. Agricultural Reviews, 36(1), 26-36. [DOI:10.5958/0976-0741.2015.00003.3]
Schneider, W. (1988). Micro experimental laboratory: An integrated system for IBM PC compatibles. Behavior Research Methods, Instruments, & Computers, 20(2), 206-217. [DOI:10.3758/BF03203833]
Shahsavari, M., Norouzi, P., Kalalianmoghaddam, H., & Teimouri, M. (2023). Effects of kudzu root on oxidative stress and inflammation in streptozotocin-induced diabetic rats. Iranian Journal of Veterinary Medicine, 17(4), 401-408. [DOI:10.32598/IJVM.17.4.1005281]
Shiao, T. F., Chen, J. C., Yang, D. W., Lee, S. N., Lee, C. F., & Cheng, W. T. K. (2011). Feasibility assessment of a tunnel-ventilated, water-padded barn on alleviation of heat stress for lactating Holstein cows in a humid area. Journal of Dairy Science, 94(11), 5393-5404. [DOI: 10.3168/jds.2010-3730] [PMID]
Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA & Furth SL. (2009). New equations to estimate GFR in children with CKD. Journal of the American Society of NephrologyM 20(3), 629-37. [DOI: 10.1681/ASN.2008030287] [PMID]
Shwartz, G., Rhoads, M. L., VanBaale, M. J., Rhoads, R. P., & Baumgard, L. H. (2009). Effects of a supplemental yeast culture on heat-stressed lactating Holstein cows. Journal of Dairy Science, 92(3), 935-942. [DOI:10.3168/jds.2008-1496] [PMID]
Smith, J. F., & Harner III, J. P. (2012). [Strategies to reduce the impact of heat and cold stress in dairy cattle facilities]. In: R. J Collier ., & J.L, Collier (Eds). Environmental Physiology of Livestock, 267-288. Hoboken: John Wiley & Sons. [DOI: 10.1002/9781119949091.ch15]
Somvanshi, S., Kaur, N., Paul, S. P., Sharma, D., Singh, E., & Majidkhan, A. (2018). Nutritional and shelter management practices to combat heat stress in dairy animals. A Review. Progressive Research - An International Journal Society for Scientific Development, 13, 569-5 [Link]
Stelwagen, K., & Singh, K. (2014). The role of tight junctions in mammary gland function. Journal of Mammary gland Biology and Neoplasia, 19(1), 131-138. [DOI:10.1007/s10911-013-9309-1] [PMID]
Weng, X., Monteiro, A. P. A., Guo, J., Li, C., Orellana, R. M., & Marins, T. N., et al. (2018). Effects of heat stress and dietary zinc source on performance and mammary epithelial integrity of lactating dairy cows. Journal of Dairy Science, 101 (3), 2617-2630. [DOI:10.3168/jds.2017-13484] [PMID]
West, J. (2003). Effects of heat stress on production in dairy cattle. Journal of Dairy Science, 86(6), 2131-2144. [DOI:10.3168/jds.S0022-0302(03)73803-X] [PMID]
Wheelock, J. B., Rhoads, R. P., Vanbaale, M. J., Sanders, S. R., & Baumgard, L. H. (2010). Effects of heat stress on energetic metabolism in lactating Holstein cows. Journal of Dairy Science, 93(2), 644-655. [DOI:10.3168/jds.2009-2295] [PMID]
York, L., Heffernan, C., Rymer, C., & Panda, N. (2017). A deterministic evaluation of heat stress mitigation and feed cost under climate change within the smallholder dairy sector. Animal, 11(5), 900-909. [DOI:10.1017/S1751731116002706] [PMID]
Zaghari, M., Mehrvarz, H., Hajati, H., & Moravej, H. (2022). Evaluation of an Innovative Zn source on feed efficiency, growth performance, skin and bone quality of broilers suffering heat stress. Animals (Basel), 12(23), 3272. [DOI:10.3390/ani12233272] [PMID] [PMCID]
| ||
آمار تعداد مشاهده مقاله: 900 تعداد دریافت فایل اصل مقاله: 443 |