تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,112,278 |
تعداد دریافت فایل اصل مقاله | 97,216,068 |
Spatial modeling of a soil fertility index using digital soil mapping (Case study from Honam watershed (Iran)) | ||
Desert | ||
مقاله 13، دوره 28، شماره 2، اسفند 2023، صفحه 365-380 اصل مقاله (750.38 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jdesert.2023.95754 | ||
نویسندگان | ||
Fatemeh Ebrahimi Meymand* 1؛ Hasan Ramezanpour2؛ Nafiseh Yaghmaeian3؛ Kamran Eftekhari1 | ||
1Department of Soil Identification Research and Land Evaluation, Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. | ||
2Soil Science Department, College of Agriculture, University of Guilan, Rasht, Iran. | ||
32 Soil Science Department, College of Agriculture, University of Guilan, Rasht, Iran. | ||
چکیده | ||
Attempt to evaluate soil fertility was and still is one of the most challenging public importance. Soil nutrients are the key factors in soil fertility. For this reason, when constructing soil fertility potential, many researchers prefer to investigate soil nutrient status or use and assessment of qualitative research methods. Quantifying soil fertility is challenging since various factors such as numerous physical and chemical characteristics of soil might affect it. The proper selection of factors that may more accurately describe soil fertility is another issue. So, in this study, we developed a regional soil fertility index (SFI) based on different soil nutrients for quantifying soil fertility. After receiving fertility, a comparative study of machine learning techniques was carried out to construct its distribution map, using digital soil mapping (DSM). The spatial distribution of the SFI map showed that 55% of the studied area had poor fertility, 27.25% had moderately fertile soils, and only a tiny area had fertile soils. The results indicated that heavy soil texture and high calcium carbonate content were the most limiting factor and phosphorus and zinc were the most limiting nutrients across the studied area. Comparing machine learning techniques yielded the finding that the Random forest model has the best performance for predicting SFI (R2= 0.86) compared with the Decision tree (R2= 0.53) and Multi-linear regression (R2= 0.35). Therefore, specific soil fertility management practices and training farmers on the proper use of soil fertility management practices are recommended. | ||
کلیدواژهها | ||
Entisols؛ Google Earth Engine؛ Inceptisols؛ K-fold cross-validation؛ Soil fertility index | ||
مراجع | ||
References
Al Budeiri, M. H., AL-Aloosy, A. 2019. Development soil fertility map by geographic information system technology for al-souera. Iraqi J Agric Sci. 50:192-203.
Amen, A. and Blaszczynski, J., 2001. Integrated landscape analysis. US Department of the Interior, Bureau of Land Management, National Science and Technology Center.
Arif Özyazici, M., Dengiz, O., Sağlam, M., Erkoçak, A. and Türkmen, F., 2017. Mapping and assessment-based modeling of soil fertility differences in the central and eastern parts of the Black Sea region using GIS and geostatistical approaches. Arab J Geosci. 10:1-9.
Awasthi, N. and Bansal, A., 2017. Application of data mining classification techniques on soil data using R. Int. J. Comput. Sci. electron. 4(1): 33-37.
Ayele, G.T., Demissie, S.S., Jemberrie, M.A., Jeong, J. and Hamilton, D.P., 2019. Terrain effects on the spatial variability of soil physical and chemical propertie. Soil Sys. 4:1-1. https://doi.org/10.3390/soilsystems4010001.
Babalola, T. S., Fasina, A.S., Kediri, W., 2019. Fertility capability classification of soils in two agro ecological zones in the basement complex zone of Nigeria. Int J Res Stud Agric Sci. 5 (4):37-43.
Bagheri Bodaghabadi, M., Amini, A., Saleh, M. H., 2019. Suitability analysis and evaluation of pistachio orchard farming, using canonical multivariate analysis. Sci Hortic. 246: 528-534.
Bagheri Bodaghabadi M, José A, Martínez-Casasnovas M et al (2015) Digital soil mapping using artificial neural network (ANN) and digital elevation model (DEM) attributes. Pedosphere 25:580-591
Breiman L (2001) Random forests. Machine learning 45(1): 5-32.
Cao, H., Jia, M., Song, J., 2021. Rice-straw mat mulching improves the soil integrated fertility index of apple orchards on cinnamon soil and fluvo-aquic soil. Sci Hortic. 278, pp 109837.
Chen, G., Cao, L., Wang, G., 2009. Application of weighted spatially fuzzy dynamic clustering algorithm in evaluation of soil fertility. Sci Agric Sin. 42(10) pp 3559-3563.
Chen, W., Li, H., Hou, E., 2018. GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Sci Total Environ. 634:853-867. DOI: 10.1016/j.scitotenv.2018.04.055.
Dedeoğlu, M., Başayiğit, L., Yüksel, M. and Kaya, F., 2020. Assessment of the vegetation indices on Sentinel-2A images for predicting the soil productivity potential in Bursa, Turkey. Environ Monit Assess. 192(1):1-16. DOI:10.1007/s10661-019-7989-8.
Dharumarajan, S., Lalitha, M., Niranjana, K.V. and Hegde, R., 2022. Evaluation of digital soil mapping approach for predicting soil fertility parameters—a case study from Karnataka Plateau, India. Arab J Geosci15 (5): 1-21.
Ebrahimi Meymand, F., Ramezanpour, H., Yaghmaeian Mahabadi, N., & Eftekhari, K. 2022. Increasing the Homogeneity of Soil Map Units Using the Level of Landform Phase in the Geopedologic Approach. Water and Soil, 35(6), 890-873. doi: 10.22067/jsw.2021.72597.1094
Fayyaz, H., Yaghmaeian, N., Sabouri, A. and Shirinfekr, A., 2021. Assessing soil fertility index using Fuzzy-AHP and parametric methods for tea cultivation with different productivities. J of Agricultural Engineering Soil Sci and Agricultural Mechanization. J Agric Sci 44(3): 275-294. DOI: 10.22055/AGEN.2021.38284.1613.
Fern, R.R., Foxley, E.A., Bruno, A. and Morrison, M.L., 2018. Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland. Ecol Indic 94(1):16-21. https://doi.org/10.1016/j.ecolind.2018.06.029.
Forkuor, G., Hounkpatin, O.K., Welp, G. and Thiel, M., 2017. High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models. PloS one 12(1) pp e0170478. https://doi.org/10.1371/journal.pone.0170478.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. and Moore, R., 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens Environ 202: 18-27. https://doi.org/10.1016/j.rse.2017.06.031.
Haryuni, K., Widijanto, A., Supriyadi, H., 2020. Soil fertility index on various rice field management systems in central java, indonesia. Am J Agric Biol Sci. 15: 75-82. DOI: https://doi.org/10.3844/ajabssp.2020.75.82.
Hengl, T., 2007. A Practical Guide to Geostatistical Mapping of Environmental Variables. EUR 22904 EN. Luxembourg (Luxembourg): Office for Official Publications of the European Communities. JRC38153
Hengl, T., Leenaars, J.G., Shepherd, K.D., Walsh, M.G., Heuvelink, G.B., Mamo, T., Tilahun, H., Berkhout, E., Cooper, M., Fegraus, E. and Wheeler, I., 2017. Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutr Cycl Agroecosystems 109(1): 77-102.
Hounkpatin, K.O., Bossa, A.Y., Yira, Y., Igue, M.A. and Sinsin, B.A., 2022. Assessment of the soil fertility status in Benin (West Africa)–Digital soil mapping using machine learning. Geoderma Reg, 28, p.e00444. https://doi.org/10.1016/j.geodrs.2021.e00444.
https://earthengine.google.com.
Hu, Y., Xu, X., Wu, F., Sun, Z., Xia, H., Meng, Q., Huang, W., Zhou, H., Gao, J., Li, W. and Peng, D., 2020. Estimating forest stock volume in Hunan Province, China, by integrating in situ plot data, Sentinel-2 images, and linear and machine learning regression models. Remote Sens, 12(1), p.186. https://doi.org/10.3390/rs12010186.
Huete, A. R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sen Environ. 25(3): 295-309. https://doi.org/10.1016/0034-4257(88)90106-X.
Iticha, B., Takele, C., 2019. Digital soil mapping for site-specific management of soils. Geoderma. 351: 85-91. https://doi.org/10.1016/j.geoderma.2019.05.026.
Jackson, M. L., 1973. Soil chemical analysis. New Delhi: Prentice Hall of India, Pvt. Ltd.
Jenks, G. F., 1977. Optimal data classification for choropleth maps. Department of Geographiy, University of Kansas Occasional Paper.
Kampichler, C., Wieland, R., Calmé, S., Weissenberger, H. and Arriaga-Weiss, S., 2010. Classification in conservation biology: a comparison of five machine-learning methods. Ecolo Inform, 5(6), pp.441-450. https://doi.org/10.1016/j.ecoinf.2010.06.003.
Khadka, D., Lamichhane, S., Amgain, R., Joshi, S., Shree, P., Kamal, S.A.H. and Ghimire, N.H., 2019. Soil fertility assessment and mapping spatial distribution of Agricultural Research Station, Bijayanagar, Jumla, Nepal. Eurasian J Soil Sci, 8(3): 237-248. DOI:10.18393/ejss.566551.
Kohavi, R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. 14th Int Joint Conference on Artificial Intelligence Montreal QC Canada. 14(2). pp 1137–1145.
Kokulan, V., Akinremi, O., Moulin, A.P. and Kumaragamage, D., 2018. Importance of terrain attributes in relation to the spatial distribution of soil properties at the micro scale: a case study. Can J Soil Sci 98(2): 292-305. https://doi.org/10.1139/cjss-2017-0128.
Kumar, R. M., Yamanur, A., Basavaraj, P., 2021. NDVI derived LAI model: A novel tool for crop monitoring. J Crop Weed. 17(1): 76-85. DOI:10.22271/09746315.2021.v17.i1.1408.
Lindsay, W. L., Norvell, W., 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J. 42(3): 421-428.
Merumba, M.S., Semu, E., Semoka, J.M. and Msanya, B.M., 2020. Soil Fertility Status in Bukoba, Missenyi and Biharamulo Districts in Kagera Region, Tanzania. Int J Appl Agric Sci 2020b 6(5): 96-117. DOI:10.11648/j.ijaas.20200605.12.
Mokarram, M., Shaygan, M. and Miliaresis, G.C., 2018. Balancing soil parameters and farmers budget by feature selection and ordered weighted averaging. Geogr Tech. 13(1): 73-84. DOI: 10.21163/GT_2018.131.08.
Moral, F.J., Rebollo, F.J. and Terrón, J.M., 2012. Analysis of soil fertility and its anomalies using an objective model. J Soil Sci Plant Nutr. 175(6): 912-919. https://doi.org/10.1002/jpln.201100361.
Nelson, D.A. and Sommers, L., 1983. Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, pp.539-579.https://doi.org/10.2134/agronmonogr9.2.2ed.c29.
Nguemezi, C., Tematio, P., Yemefack, M., Tsozue, D. and Silatsa, T.B.F., 2020. Soil quality and soil fertility status in major soil groups at the Tombel area, South-West Cameroon. Heliyon, 6(2), p.e03432. https://doi.org/10.1016/j.heliyon.2020.e03432.
Olsen, S. R., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
Panday, D., Maharjan, B., Chalise, D., Shrestha, R.K. and Twanabasu, B., 2018. Digital soil mapping in the Bara district of Nepal using kriging tool in ArcGIS. PloS one, 13(10), p.e0206350. https://doi.org/10.1371/journal.pone.0206350.
Pant, J., Pant, P., Bhatt, A., Pant, H. and Pandey, N., 2019. Feature Selection towards Soil Classification in the context of Fertility classes using Machine Learning. Int J Eng Innov Technol. 8(12): 4000-4004. DOI: 10.35940/ijitee. L3487.1081219.
Park, S. J., Vlek, P. L., 2002. Environmental correlation of three-dimensional soil spatial variability: a comparison of three adaptive techniques. Geoderma. 109(1-2): 117-140. https://doi.org/10.1016/S0016-7061(02)00146-5.
Prado, R.B., Benites, V.D.M., Polidoro, J.C. and Gonçalves, C.E., 2012. Mapping soil fertility at different scales to support sustainable brazilian agriculture. Int J Agric Biol Eng .6(9): 137-145.
Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H. and Sorooshian, S., 1994. A modified soil adjusted vegetation index. Remote Sens Environ 48(2): 119-126. https://doi.org/10.1016/0034-4257(94)90134-1
Quinlan, J. R., 1986. Induction of decision trees. Mach Learn. 1(1): 81-106.
Bin Abdul Rahim, H.R., Bin Lokman, M.Q., Harun, S.W., Hornyak, G.L., Sterckx, K., Mohammed, W.S. and Dutta, J., 2016. Applied light-side coupling with optimized spiral-patterned zinc oxide nanorod coatings for multiple optical channel alcohol vapor sensing. J of Nanophotonics. 10(3): 036009. DOI:10.1117/1.JNP.10.036009.
Rahman, M.M., Zhang, X., Ahmed, I., Iqbal, Z., Zeraatpisheh, M., Kanzaki, M. and Xu, M., 2020. Remote sensing-based mapping of senescent leaf C: N ratio in the sundarbans reserved forest using machine learning techniques. Remote Sens. 12(9): 1375. https://doi.org/10.3390/rs12091375.
Ray, S.S., Singh, J.P., Das, G. and Panigrahy, S., 2004. Use of high-resolution remote sensing data for generating site-specific soil management plan. Int. Arch. Photogramm. Remote Sens Spatial Inf Syst. 35(7): 127-131.
Rossel, R.V., Jeon, Y.S., Odeh, I.O.A. and McBratney, A.B., 2008. Using a legacy soil sample to develop a mid-IR spectral library. Soil Res. 46(1): 1-16. DOI:10.1071/SR07099.
Rouse, J.W., Haas, R.H., Schell, J.A. and Deering, D.W., 1974. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ, 351(1), p.309.
Sağlam, M. and Dengiz, O., 2014. Distribution and evaluation of soil fertility based on geostatistical approach in Bafra Deltaic Plain. Türkiye Tarımsal Araştırmalar Dergisi. 1(2): 186-195. DOI:10.19159/tutad.27089.
Selige, T., Böhner, J., Schmidhalter, U., 2006. High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures. Geoderma. 136(1-2):235-244.doi.org/10.1016/j.geoderma.2006.03.050.
Seo, B., Lee, J., Lee, K.D., Hong, S. and Kang, S., 2019. Improving remotely-sensed crop monitoring by NDVI-based crop phenology estimators for corn and soybeans in Iowa and Illinois, USA. Field crops Res. 238: 113-128. https://doi.org/10.1016/j.fcr.2019.03.015.
Shahbazi, K., Besharati, H., 2013. An overview of the fertility status of Iranian agricultural soils. Land Management J. 1(1): 1-15.
Sirsat, M.S., Cernadas, E., Fernández-Delgado, M. and Barro, S., 2018. Automatic prediction of village-wise soil fertility for several nutrients in India using a wide range of regression methods. Comput Electron Agric. 154: 120-133. https://doi.org/10.1016/j.compag.2018.08.003.
United States. Division of Soil Survey, 1993. Soil survey manual (No. 18). US Department of Agriculture.
Soil Survey Staff, 2014. Keys to Soil Taxonomy. 12th Edition, USDA-Natural Resources Conservation Service, Washington DC.
Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F. and Malone, B.P., 2014. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma. 213: 15-28. https://doi.org/10.1016/j.geoderma.2013.07.020.
Thapa, S., Rudd, J.C., Xue, Q., Bhandari, M., Reddy, S.K., Jessup, K.E., Liu, S., Devkota, R.N., Baker, J. and Baker, S., 2019. Use of NDVI for characterizing winter wheat response to water stress in a semi-arid environment. J Crop Improv. 33(5): 633-648.
Tunçay, T., Kılıç, Ş., Dedeoğlu, M., Dengiz, O., Başkan, O. and Bayramin, I., 2021. Assessing soil fertility index based on remote sensing and GIS techniques with field validation in a semiarid agricultural ecosystem. J Arid Environ. 190: 104525. https://doi.org/10.1016/j.jaridenv.2021.104525.
Walkley, A., Black, I. A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1): 29-38.
Weiss, M., Jacob, F., Duveiller, G., 2020. Remote sensing for agricultural applications: A meta-review. Remote Sens Environ. 236: 111402.
Xie, Q., Dash, J., Huang, W., Peng, D., Qin, Q., Mortimer, H., Casa, R., Pignatti, S., Laneve, G., Pascucci, S. and Dong, Y., 2018. Vegetation indices combining the red and red-edge spectral information for leaf area index retrieval. IEEE J Sel Top Appl Earth Obs Remote Sens. 11(5): 1482-1493. DOI: 10.1109/JSTARS.2018.2813281.
Xie, S., Liu, L., Zhang, X., Yang, J., Chen, X. and Gao, Y., 2019. Automatic land-cover mapping using landsat time-series data based on google earth engine. Remote Sens. 11(24): 3023. https://doi.org/10.3390/rs11243023.
Yigini, Y., Olmedo, G.F., Reiter, S., Baritz, R., Viatkin, K. and Vargas, R., 2018. Soil organic carbon mapping: cookbook.
Zabihi, H., Alizadeh, M., Kibet Langat, P., Karami, M., Shahabi, H., Ahmad, A., Nor Said, M. and Lee, S., 2019. GIS multi-criteria analysis by ordered weighted averaging (OWA): toward an integrated citrus management strategy. Sustainability. 11(4): 1009. https://doi.org/10.3390/su11041009.
Zeraatpisheh, M., Ayoubi, S., Jafari, A., Tajik, S. and Finke, P., 2019. Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma, 338, pp.445-452. https://doi.org/10.1016/j.geoderma.2018.09.006.
Zhao, Y., Potgieter, A.B., Zhang, M., Wu, B. and Hammer, G.L., 2020. Predicting wheat yield at the field scale by combining high-resolution Sentinel-2 satellite imagery and crop modelling. Remote Sens. 12(6): 1024. https://doi.org/10.3390/rs12061024.
Zinck, J. A., 1989. Physiography and soils. Lecture notes for soil students. Soil Sci Division. Soil survey courses subject matter: K6 ITC Enschede, the Netherlands | ||
آمار تعداد مشاهده مقاله: 164 تعداد دریافت فایل اصل مقاله: 249 |