
تعداد نشریات | 162 |
تعداد شمارهها | 6,692 |
تعداد مقالات | 72,229 |
تعداد مشاهده مقاله | 129,179,384 |
تعداد دریافت فایل اصل مقاله | 102,007,393 |
Serum Trace Elements and Oxidant/Antioxidant Status in Persian Cats With Dermatophytosis Compared to Other Dermatological Disorders | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 12، دوره 19، شماره 2، تیر 2025، صفحه 307-316 اصل مقاله (1.17 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.19.2.1005476 | ||
نویسندگان | ||
Bahareh Ahmadi Torkamani1؛ Samaneh Eidi2؛ Mohammad Heidarpour3؛ Javad Khoshnegah* 3 | ||
1Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. | ||
2Section of Mycology Research, Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. | ||
3Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. | ||
چکیده | ||
Background: Despite the high prevalence of dermatophytosis in cats, little is known about the impact of this disease on the antioxidant status and trace elements in these animals. Objectives: This study aimed to investigate the concentration of serum trace elements (copper, iron, zinc, and selenium) and oxidant/antioxidant status (malondialdehyde, total antioxidant capacity (TAC), and thiol group) in Persian cats with dermatophytosis compared to healthy controls and other dermatological disorders. Methods: Three groups of cats were selected: Cats with dermatophytosis (n=13), cats with other dermatological conditions (n=6), and clinically and dermatologically healthy cats (n=6). All 25 cats were subjected to clinical and dermatological examinations, including direct microscopic examination and fungal cultures. Additionally, possible contamination with feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) were tested. Results: Microsporum canis was the only dermatophyte species isolated from the affected cats, and only two cats were infected with the FIV: One in the dermatophytosis group and one in the other skin disease group. For trace elements, we did not detect any differences between cats with dermatophytosis and healthy cats. However, copper levels were higher in other skin disease groups than healthy controls (P<0.05). Cats with dermatophytosis and other skin diseases revealed a decrease in TAC compared to healthy controls (P<0.01). Conclusion: The present study found variations in the oxidative indices in cats with dermatophytosis and other skin disorders. This result supports the hypothesis that improving antioxidant status through dietary supplementation may be beneficial in preventing and resolving skin diseases in cats. | ||
کلیدواژهها | ||
Oxidative stress؛ Dermatophytosis؛ Cat؛ Trace elements؛ Dermatological disorders | ||
اصل مقاله | ||
Introduction Additionally, the researchers checked the cats for “FIV” and “FeLV” infections to minimize the potential effect of these immunosuppressive diseases on the incidence of dermatophytosis.
Dermatophytes have been shown to possess multiple enzymatic properties that can vary according to the fungal strain. Keratinase secreted from M. canis may be associated with increased inflammation and pruritus (Dahl, 1994). This inflammatory reaction can produce extreme amounts of reactive oxidants, which can cause oxidative stress (Beigh et al., 2014). Trace elements have been reported to be required for the activity of several enzymes, including antioxidant enzymes (Chow, 2019). Although the trace element status and antioxidant imbalance in feline dermatophytosis have not been studied, similar studies have investigated a variety of infectious and inflammatory skin disorders in other animals, including canine dermatophytosis (Beigh et al., 2014; Ural et al., 2009; Nafie et al., 2021), sarcoptic mange (Beigh et al., 2016), demodicosis (Dimri et al., 2008), and bovine dermatophytosis (Al-Qudah et al., 2010; Nisbet et al., 2006; Pasa & Kiral, 2009). Trace minerals are essential components in living organisms. They are now recognized as essential for health and play a vital role in antioxidant defense (Evans & Halliwell, 2001). Deficits in trace elements may lead to cat dermatophytosis by suppressing their immune system and lowering the activity of antioxidant enzymes containing copper, zinc, iron, and selenium as cofactors. Many studies have shown the relationship between micronutrient level and pathogenicity of infectious and inflammatory skin diseases in dogs and calves (Al-Qudah et al., 2010; Beigh et al., 2014; Beigh et al., 2016; Dimri et al., 2008; Nisbet et al., 2006). In 2014, Beigh et al. observed lower copper and zinc concentrations and higher iron levels in dogs with dermatophytosis. In 2010, researchers studied the trace elements copper, zinc, and selenium in calves (Beigh et al., 2014). Al-Qudah et al., (2010) found that the levels of these elements in the blood of calves with dermatophytosis were lower than those in healthy controls. Dogs with demodicosis also indicated reduced zinc and copper concentrations (Dimri et al., 2008). However, two other studies did not show a relationship between dogs’ zinc and copper concentrations and dermatophytosis (Ural et al., 2009; Nafie et al., 2021). Similarly, no differences were detected in serum trace elements between the dermatophytosis-affected cats and the healthy control group in the present study.
Ethical Considerations
Abastabar, M., Jedi, A., Guillot, J., Ilkit, M., Eidi, S., & Hedayati, M. T., et al. (2019). In vitro activities of 15 antifungal drugs against a large collection of clinical isolates of Microsporum canis. Mycoses, 62(11), 1069–1078. [DOI:10.1111/myc.12986] [PMID] Afarchia, C., Gasser, R. B., Figueredo, L. A., Weigl, S., Danesi, P., & Capelli, G., et al. (2013). An improved molecular diagnostic assay for canine and feline dermatophytosis. Medical Mycology, 51(2), 136–143. [DOI:10.3109/13693786.2012.691995] [PMID] Al-Qudah, K. M., Gharaibeh, A. A., & Al-Shyyab, M. M. (2010). Trace minerals status and antioxidant enzymes activities in calves with dermatophytosis. Biological Trace Element Research, 136(1), 40–47. [DOI:10.1007/s12011-009-8525-4] [PMID] Ansari, S., Hedayati, M. T., Zomorodian, K., Pakshir, K., Badali, H., & Rafiei, A., et al. (2016). Molecular characterization and in vitro antifungal susceptibility of 316 clinical isolates of dermatophytes in Iran. Mycopathologia, 181(1-2), 89–95.[DOI:10.1007/s11046-015-9941-y] [PMID] Avery, J. C., & Hoffmann, P. R. (2018). Selenium, selenoproteins, and immunity. Nutrients, 10(9), 1203. [PMID] Beigh, S. A., Soodan, J. S., Singh, R., Khan, A. M., & Dar, M. A. (2014). Evaluation of trace elements, oxidant/antioxidant status, vitamin C and β-carotene in dogs with dermatophytosis. Mycoses, 57(6), 358–365. [DOI:10.1111/myc.12163] [PMID] Beigh, S. A., Soodan, J. S., & Bhat, A. M. (2016). Sarcoptic mange in dogs: Its effect on liver, oxidative stress, trace minerals and vitamins. Veterinary Parasitology, 227, 30–34.[DOI:10.1016/j.vetpar.2016.07.013] [PMID] Boligon, A. A., Machado, M. M., & Athayde, M. L. (2014). Technical evaluation of antioxidant activity. Medicinal chemistry, 4(7), 517-522. [Link] Brieger, K., Schiavone, S., Miller, F. J., Jr, & Krause, K. H. (2012). Reactive oxygen species: From health to disease. Swiss Medical Weekly, 142, [DOI:10.4414/smw.2012.13659] [PMID] Carter, G. R. (1990). Dermatophytes and dermatophytoses. In G. R. Carter, & J. R. Cole, Jr. (Eds.), Diagnostic Procedure in Veterinary Bacteriology and Mycology (pp. 381-404). Massachusetts: Academic Press. DOI:10.1016/B978-0-12-161775-2.50033-5] Chow, C. K. (2019). Cellular antioxidant defense mechanisms. Florida: CRC Press. [Link] Celestrino, G. A., Verrinder Veasey, J., Benard, G., & Sousa, M. G. T. (2021). Host immune responses in dermatophytes infection. Mycoses, 64(5), 477–483. [DOI:10.1111/myc.13246] [PMID] Dahl, M. V. (1994). Dermatophytosis and the immune response. Journal of the American Academy of Dermatology, 31(3 Pt 2), S34–S41. [DOI:10.1016/S0190-9622(08)81265-0] [PMID] Dimri, U., Ranjan, R., Kumar, N., Sharma, M. C., Swarup, D., & Sharma, B., et al. (2008). Changes in oxidative stress indices, zinc and copper concentrations in blood in canine demodicosis. Veterinary Parasitology, 154(1-2), 98–102. [DOI:10.1016/j.vetpar.2008.03.001] [PMID] Evans, P., & Halliwell, B. (2001). Micronutrients: Oxidant/antioxidant status. British Journal of Nutrition, 85(S2), S67-S74. [Link] Gombart, A. F., Pierre, A., & Maggini, S. (2020). A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients, 12(1), 236.[DOI:10.3390/nu12010236][PMID] Gordon, E., Idle, A., & DeTar, L. (2020). Descriptive epidemiology of companion animal dermatophytosis in a Canadian Pacific Northwest animal shelter system. The Canadian Veterinary Journal=La revue Veterinaire Canadienne, 61(7), 763–770. [PMID] Halliwell, B. (1999). Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radical Research, 31(4), 261–272. [DOI:10.1080/10715769900300841] [PMID] Hogan, D., & Wheeler, R. T. (2014). The complex roles of NADPH oxidases in fungal infection. Cellular Microbiology, 16(8), 1156–1167. [DOI:10.1111/cmi.12320][PMID] Hu M. L. (1994). Measurement of protein thiol groups and glutathione in plasma. Methods in Enzymology, 233, 380–385. [DOI:10.1016/s0076-6879(94)33044-1] [PMID] Katiraee, F., Kouchak Kosari, Y., Soltani, M., Shokri, H., & Hassan Minooieanhaghighi, M. (2021). Molecular identification and antifungal susceptibility patterns of dermatophytes isolated from companion animals with clinical symptoms of dermatophytosi Journal of Veterinary Research, 65(2), 175–182.[DOI:10.2478/jvetres-2021-0020][PMID] Khan, A. Q., Agha, M. V., Sheikhan, K. S. A. M., Younis, S. M., Tamimi, M. A., & Alam, M., et al. (2022). Targeting deregulated oxidative stress in skin inflammatory diseases: An update on clinical importance. Biomedicine & Pharmacotherapy=Biomedecine & Pharmacotherapie, 154, [DOI:10.1016/j.biopha.2022.113601] [PMID] Khodadadi, H., Zomorodian, K., Nouraei, H., Zareshahrabadi, Z., Barzegar, S., & Zare, M. R., et (2021). Prevalence of superficial-cutaneous fungal infections in Shiraz, Iran: A five-year retrospective study (2015-2019). Journal of Clinical Laboratory Analysis, 35(7), e23850. [DOI:10.1002/jcla.23850][PMID] Lavari, A., Eidi, S., & Soltani, M. (2022). Molecular diagnosis of dermatophyte isolates from canine and feline dermatophytosis in Northeast Iran. Veterinary Medicine and Science, 8(2), 492–497. [DOI:10.1002/vms3.698][PMID] Linnerz, T., & Hall, C. J. (2020). The diverse roles of phagocytes during bacterial and fungal infections and sterile inflammation: lessons from Zebrafish. Frontiers in Immunology, 11, [DOI:10.3389/fimmu.2020.01094][PMID] Lv, J., Ai, P., Lei, S., Zhou, F., Chen, S., & Zhang, Y. (2020). Selenium levels and skin diseases: Systematic review and meta-analysis. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 62, [DOI:10.1016/j.jtemb.2020.126548] [PMID] Maggini, S., Wintergerst, E. S., Beveridge, S., & Hornig, D. H. (2007). Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. The British Journal of Nutrition, 98 (Suppl 1), S29–S35. [DOI:10.1017/S0007114507832971] [PMID] Moriello, K. A., Coyner, K., Paterson, S., & Mignon, B. (2017). Diagnosis and treatment of dermatophytosis in dogs and cats: Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Veterinary Dermatology, 28(3), 266–e68. [DOI:10.1111/vde.12440] [PMID] Moriello, K. (2019). Dermatophytosis in cats and dogs: A practical guide to diagnosis and treatment. In Practice, 41(4), 138-147. [DOI:1136/inp.l1539] Moriello, K. A., & Coyner, K. (2021). Dermatophytosis. In J. E. Sykes (Ed.), Greene’s infectious diseases of the dog and cat (pp. 961-977). Amsterdam: Elsevier. [DOI:10.1016/B978-0-323-50934-3.00078-1] Nafie, T., Mahmoud, M., & Abdelkhalek, D. (2021). Clinical and laboratory studies of dermatophytosis affected dogs in correlation to oxidative stress. Suez Canal Veterinary Medical Journal (SCVMJ),26(1), 17-26. [DOI:10.21608/scvmj.2021.184731] Nikbakht, G. (2022). Novel insights into infection and immunity. Iranian Journal of Veterinary Medicine, 16(2), 99-100. [DOI:10.22059/ijvm.2022.337927.1005234] Nisbet, C., Yarim, G. F., Ciftci, G., Arslan, H. H., & Ciftci, A. (2006). Effects of trichophytosis on serum zinc levels in calves. Biological Trace Element Research, 113(3), 273–280. [DOI:10.1385/BTER:113:3:273] [PMID] Nosewicz, J., Spaccarelli, N., Roberts, K. M., Hart, P. A., Kaffenberger, J. A., & Trinidad, J. C., et al. (2022). The epidemiology, impact, and diagnosis of micronutrient nutritional dermatoses part 1: Zinc, selenium, copper, vitamin A, and vitamin C. Journal of the American Academy of Dermatology, 86(2), 267–278. [DOI:10.1016/j.jaad.2021.07.079] [PMID] Park, K. (2015). Role of micronutrients in skin health and function. Biomolecules & Therapeutics, 23(3), 207–217. [DOI:10.4062/biomolther.2015.003][PMID] Pasa, S., & Kiral, F. (2009). Serum zinc and vitamin A concentrations in calves with dermatophytosis. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 15(1), 9-12. [Link] Pathakumari, B., Liang, G., & Liu, W. (2020). Immune defence to invasive fungal infections: A comprehensive review. Biomedicine & Pharmacotherapy=Biomedecine & Pharmacotherapie, 130, [DOI:10.1016/j.biopha.2020.110550] [PMID] Placer, Z. A., Cushman, L. L., & Johnson, B. C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry, 16(2), 359–364.[DOI:10.1016/0003-2697(66)90167-9] [PMID] Portugal, M., Barak, V., Ginsburg, I., & Kohen, R. (2007). Interplay among oxidants, antioxidants, and cytokines in skin disorders: Present status and future considerations. Biomedicine & Pharmacotherapy=Biomedecine & pharmacotherapie, 61(7), 412–422. [DOI:10.1016/j.biopha.2007.05.010] [PMID] Ramezanpour Eshkevari, S., Sasani, F., Shokrpoor, S., Mardjanmehr, S. H., Akbarein, H., & Ashrafi, I. (2024). A histopathological study on the changes in the central nervous system of dead cats with neurological symptoms. Iranian Journal of Veterinary Medicine, 18(4), 545-554. [Link] Saleh, M. A., Mahran, O. M., & Bassam Al-Salahy, M. (2011). Circulating oxidative stress status in dromedary camels infested with sarcoptic mange. Veterinary Research Communications, 35(1), 35–45. [DOI:10.1007/s11259-010-9450-x] [PMID] Seyednejad, F., Shirani, D., Bokai, S. and Nasiri, S. M. (2023). Evaluation of iron status in cats with hypertrophic cardiomyopathy with and without congestive heart failure. Iranian Journal of Veterinary Medicine, 17(3), 209-216. [DOI:10.32598/ijvm.17.3.1005245] Shahsavari, M., Norouzi, P., Kalalianmoghaddam, H., & Teimouri, M. (2023). Effects of kudzu root on oxidative stress and inflammation in streptozotocin-induced diabetic rats. Iranian Journal of Veterinary Medicine, 17(4), 401-408. [DOI:10.32598/ijvm.17.4.1005281] Shokri, H., & & Khosravi, A. R. (2016). An epidemiological study of animals dermatomycoses in Iran. Journal de Mycologie Médicale, 26(2), 170–177. [DOI:10.1016/j.mycmed.2016.04.007] [PMID] Sloup, V., Jankovská, I., Nechybová, S., Peřinková, P., & Langrová, I. (2017). Zinc in the animal organism: A review. Scientia Agriculturae Bohemica, 48(1), 13-21. [Link] Trouba, K. J., Hamadeh, H. K., Amin, R. P., & Germolec, D. R. (2002). Oxidative stress and its role in skin disease. Antioxidants & Redox Signaling, 4(4), 665–673.[DOI:10.1089/15230860260220175] [PMID] Ural, K., Karakurum, M. Ç., Duru, O., CINGI, C. Ç., & Haydardedeoğlu, A. E. (2009). Serum zinc concentrations in dogs with Microsporum canis dermatophytosis: A pilot study. Turkish Journal of Veterinary and Animal Sciences, 33(4), 279-283. [DOI:10.3906/vet-0711-20] Zhu, X., Jiang, M., Song, E., Jiang, X., & Song, Y. (2015). Selenium deficiency sensitizes the skin for UVB-induced oxidative damage and inflammation which involved the activation of p38 MAPK signaling. Food and Chemical Toxicology: An International Journal Published For The British Industrial Biological Research Association, 75, 139–145. [DOI:10.1016/j.fct.2014.11.017] [PMID] | ||
مراجع | ||
Abastabar, M., Jedi, A., Guillot, J., Ilkit, M., Eidi, S., & Hedayati, M. T., et al. (2019). In vitro activities of 15 antifungal drugs against a large collection of clinical isolates of Microsporum canis. Mycoses, 62(11), 1069–1078. [DOI:10.1111/myc.12986] [PMID]
Afarchia, C., Gasser, R. B., Figueredo, L. A., Weigl, S., Danesi, P., & Capelli, G., et al. (2013). An improved molecular diagnostic assay for canine and feline dermatophytosis. Medical Mycology, 51(2), 136–143. [DOI:10.3109/13693786.2012.691995] [PMID]
Al-Qudah, K. M., Gharaibeh, A. A., & Al-Shyyab, M. M. (2010). Trace minerals status and antioxidant enzymes activities in calves with dermatophytosis. Biological Trace Element Research, 136(1), 40–47. [DOI:10.1007/s12011-009-8525-4] [PMID]
Ansari, S., Hedayati, M. T., Zomorodian, K., Pakshir, K., Badali, H., & Rafiei, A., et al. (2016). Molecular characterization and in vitro antifungal susceptibility of 316 clinical isolates of dermatophytes in Iran. Mycopathologia, 181(1-2), 89–95.[DOI:10.1007/s11046-015-9941-y] [PMID]
Avery, J. C., & Hoffmann, P. R. (2018). Selenium, selenoproteins, and immunity. Nutrients, 10(9), 1203. [PMID]
Beigh, S. A., Soodan, J. S., Singh, R., Khan, A. M., & Dar, M. A. (2014). Evaluation of trace elements, oxidant/antioxidant status, vitamin C and β-carotene in dogs with dermatophytosis. Mycoses, 57(6), 358–365. [DOI:10.1111/myc.12163] [PMID]
Beigh, S. A., Soodan, J. S., & Bhat, A. M. (2016). Sarcoptic mange in dogs: Its effect on liver, oxidative stress, trace minerals and vitamins. Veterinary Parasitology, 227, 30–34.[DOI:10.1016/j.vetpar.2016.07.013] [PMID]
Boligon, A. A., Machado, M. M., & Athayde, M. L. (2014). Technical evaluation of antioxidant activity. Medicinal chemistry, 4(7), 517-522. [Link]
Brieger, K., Schiavone, S., Miller, F. J., Jr, & Krause, K. H. (2012). Reactive oxygen species: From health to disease. Swiss Medical Weekly, 142, [DOI:10.4414/smw.2012.13659] [PMID]
Carter, G. R. (1990). Dermatophytes and dermatophytoses. In G. R. Carter, & J. R. Cole, Jr. (Eds.), Diagnostic Procedure in Veterinary Bacteriology and Mycology (pp. 381-404). Massachusetts: Academic Press. DOI:10.1016/B978-0-12-161775-2.50033-5]
Chow, C. K. (2019). Cellular antioxidant defense mechanisms. Florida: CRC Press. [Link]
Celestrino, G. A., Verrinder Veasey, J., Benard, G., & Sousa, M. G. T. (2021). Host immune responses in dermatophytes infection. Mycoses, 64(5), 477–483. [DOI:10.1111/myc.13246] [PMID]
Dahl, M. V. (1994). Dermatophytosis and the immune response. Journal of the American Academy of Dermatology, 31(3 Pt 2), S34–S41. [DOI:10.1016/S0190-9622(08)81265-0] [PMID]
Dimri, U., Ranjan, R., Kumar, N., Sharma, M. C., Swarup, D., & Sharma, B., et al. (2008). Changes in oxidative stress indices, zinc and copper concentrations in blood in canine demodicosis. Veterinary Parasitology, 154(1-2), 98–102. [DOI:10.1016/j.vetpar.2008.03.001] [PMID]
Evans, P., & Halliwell, B. (2001). Micronutrients: Oxidant/antioxidant status. British Journal of Nutrition, 85(S2), S67-S74. [Link]
Gombart, A. F., Pierre, A., & Maggini, S. (2020). A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients, 12(1), 236.[DOI:10.3390/nu12010236][PMID]
Gordon, E., Idle, A., & DeTar, L. (2020). Descriptive epidemiology of companion animal dermatophytosis in a Canadian Pacific Northwest animal shelter system. The Canadian Veterinary Journal=La revue Veterinaire Canadienne, 61(7), 763–770. [PMID]
Halliwell, B. (1999). Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radical Research, 31(4), 261–272. [DOI:10.1080/10715769900300841] [PMID]
Hogan, D., & Wheeler, R. T. (2014). The complex roles of NADPH oxidases in fungal infection. Cellular Microbiology, 16(8), 1156–1167. [DOI:10.1111/cmi.12320][PMID]
Hu M. L. (1994). Measurement of protein thiol groups and glutathione in plasma. Methods in Enzymology, 233, 380–385. [DOI:10.1016/s0076-6879(94)33044-1] [PMID]
Katiraee, F., Kouchak Kosari, Y., Soltani, M., Shokri, H., & Hassan Minooieanhaghighi, M. (2021). Molecular identification and antifungal susceptibility patterns of dermatophytes isolated from companion animals with clinical symptoms of dermatophytosi Journal of Veterinary Research, 65(2), 175–182.[DOI:10.2478/jvetres-2021-0020][PMID]
Khan, A. Q., Agha, M. V., Sheikhan, K. S. A. M., Younis, S. M., Tamimi, M. A., & Alam, M., et al. (2022). Targeting deregulated oxidative stress in skin inflammatory diseases: An update on clinical importance. Biomedicine & Pharmacotherapy=Biomedecine & Pharmacotherapie, 154, [DOI:10.1016/j.biopha.2022.113601] [PMID]
Khodadadi, H., Zomorodian, K., Nouraei, H., Zareshahrabadi, Z., Barzegar, S., & Zare, M. R., et (2021). Prevalence of superficial-cutaneous fungal infections in Shiraz, Iran: A five-year retrospective study (2015-2019). Journal of Clinical Laboratory Analysis, 35(7), e23850. [DOI:10.1002/jcla.23850][PMID]
Lavari, A., Eidi, S., & Soltani, M. (2022). Molecular diagnosis of dermatophyte isolates from canine and feline dermatophytosis in Northeast Iran. Veterinary Medicine and Science, 8(2), 492–497. [DOI:10.1002/vms3.698][PMID]
Linnerz, T., & Hall, C. J. (2020). The diverse roles of phagocytes during bacterial and fungal infections and sterile inflammation: lessons from Zebrafish. Frontiers in Immunology, 11, [DOI:10.3389/fimmu.2020.01094][PMID]
Lv, J., Ai, P., Lei, S., Zhou, F., Chen, S., & Zhang, Y. (2020). Selenium levels and skin diseases: Systematic review and meta-analysis. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 62, [DOI:10.1016/j.jtemb.2020.126548] [PMID]
Maggini, S., Wintergerst, E. S., Beveridge, S., & Hornig, D. H. (2007). Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. The British Journal of Nutrition, 98 (Suppl 1), S29–S35. [DOI:10.1017/S0007114507832971] [PMID]
Moriello, K. A., Coyner, K., Paterson, S., & Mignon, B. (2017). Diagnosis and treatment of dermatophytosis in dogs and cats: Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Veterinary Dermatology, 28(3), 266–e68. [DOI:10.1111/vde.12440] [PMID]
Moriello, K. (2019). Dermatophytosis in cats and dogs: A practical guide to diagnosis and treatment. In Practice, 41(4), 138-147. [DOI:1136/inp.l1539]
Moriello, K. A., & Coyner, K. (2021). Dermatophytosis. In J. E. Sykes (Ed.), Greene’s infectious diseases of the dog and cat (pp. 961-977). Amsterdam: Elsevier. [DOI:10.1016/B978-0-323-50934-3.00078-1]
Nafie, T., Mahmoud, M., & Abdelkhalek, D. (2021). Clinical and laboratory studies of dermatophytosis affected dogs in correlation to oxidative stress. Suez Canal Veterinary Medical Journal (SCVMJ),26(1), 17-26. [DOI:10.21608/scvmj.2021.184731]
Nikbakht, G. (2022). Novel insights into infection and immunity. Iranian Journal of Veterinary Medicine, 16(2), 99-100. [DOI:10.22059/ijvm.2022.337927.1005234]
Nisbet, C., Yarim, G. F., Ciftci, G., Arslan, H. H., & Ciftci, A. (2006). Effects of trichophytosis on serum zinc levels in calves. Biological Trace Element Research, 113(3), 273–280. [DOI:10.1385/BTER:113:3:273] [PMID]
Nosewicz, J., Spaccarelli, N., Roberts, K. M., Hart, P. A., Kaffenberger, J. A., & Trinidad, J. C., et al. (2022). The epidemiology, impact, and diagnosis of micronutrient nutritional dermatoses part 1: Zinc, selenium, copper, vitamin A, and vitamin C. Journal of the American Academy of Dermatology, 86(2), 267–278. [DOI:10.1016/j.jaad.2021.07.079] [PMID]
Park, K. (2015). Role of micronutrients in skin health and function. Biomolecules & Therapeutics, 23(3), 207–217. [DOI:10.4062/biomolther.2015.003][PMID]
Pasa, S., & Kiral, F. (2009). Serum zinc and vitamin A concentrations in calves with dermatophytosis. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 15(1), 9-12. [Link]
Pathakumari, B., Liang, G., & Liu, W. (2020). Immune defence to invasive fungal infections: A comprehensive review. Biomedicine & Pharmacotherapy=Biomedecine & Pharmacotherapie, 130, [DOI:10.1016/j.biopha.2020.110550] [PMID]
Placer, Z. A., Cushman, L. L., & Johnson, B. C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry, 16(2), 359–364.[DOI:10.1016/0003-2697(66)90167-9] [PMID]
Portugal, M., Barak, V., Ginsburg, I., & Kohen, R. (2007). Interplay among oxidants, antioxidants, and cytokines in skin disorders: Present status and future considerations. Biomedicine & Pharmacotherapy=Biomedecine & pharmacotherapie, 61(7), 412–422. [DOI:10.1016/j.biopha.2007.05.010] [PMID]
Ramezanpour Eshkevari, S., Sasani, F., Shokrpoor, S., Mardjanmehr, S. H., Akbarein, H., & Ashrafi, I. (2024). A histopathological study on the changes in the central nervous system of dead cats with neurological symptoms. Iranian Journal of Veterinary Medicine, 18(4), 545-554. [Link]
Saleh, M. A., Mahran, O. M., & Bassam Al-Salahy, M. (2011). Circulating oxidative stress status in dromedary camels infested with sarcoptic mange. Veterinary Research Communications, 35(1), 35–45. [DOI:10.1007/s11259-010-9450-x] [PMID]
Seyednejad, F., Shirani, D., Bokai, S. and Nasiri, S. M. (2023). Evaluation of iron status in cats with hypertrophic cardiomyopathy with and without congestive heart failure. Iranian Journal of Veterinary Medicine, 17(3), 209-216. [DOI:10.32598/ijvm.17.3.1005245]
Shahsavari, M., Norouzi, P., Kalalianmoghaddam, H., & Teimouri, M. (2023). Effects of kudzu root on oxidative stress and inflammation in streptozotocin-induced diabetic rats. Iranian Journal of Veterinary Medicine, 17(4), 401-408. [DOI:10.32598/ijvm.17.4.1005281]
Shokri, H., & & Khosravi, A. R. (2016). An epidemiological study of animals dermatomycoses in Iran. Journal de Mycologie Médicale, 26(2), 170–177. [DOI:10.1016/j.mycmed.2016.04.007] [PMID]
Sloup, V., Jankovská, I., Nechybová, S., Peřinková, P., & Langrová, I. (2017). Zinc in the animal organism: A review. Scientia Agriculturae Bohemica, 48(1), 13-21. [Link]
Trouba, K. J., Hamadeh, H. K., Amin, R. P., & Germolec, D. R. (2002). Oxidative stress and its role in skin disease. Antioxidants & Redox Signaling, 4(4), 665–673.[DOI:10.1089/15230860260220175] [PMID]
Ural, K., Karakurum, M. Ç., Duru, O., CINGI, C. Ç., & Haydardedeoğlu, A. E. (2009). Serum zinc concentrations in dogs with Microsporum canis dermatophytosis: A pilot study. Turkish Journal of Veterinary and Animal Sciences, 33(4), 279-283. [DOI:10.3906/vet-0711-20]
Zhu, X., Jiang, M., Song, E., Jiang, X., & Song, Y. (2015). Selenium deficiency sensitizes the skin for UVB-induced oxidative damage and inflammation which involved the activation of p38 MAPK signaling. Food and Chemical Toxicology: An International Journal Published For The British Industrial Biological Research Association, 75, 139–145. [DOI:10.1016/j.fct.2014.11.017] [PMID] | ||
آمار تعداد مشاهده مقاله: 209 تعداد دریافت فایل اصل مقاله: 419 |