تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,121,664 |
تعداد دریافت فایل اصل مقاله | 97,228,908 |
Quantifying Uncertainty of Green Inhibition Efficiency of Luffa Cylindrica Leaf Extract on Mild Steel in Acidic Medium | ||
Journal of Chemical and Petroleum Engineering | ||
دوره 58، شماره 1، شهریور 2024، صفحه 189-207 اصل مقاله (1.09 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jchpe.2024.370271.1473 | ||
نویسندگان | ||
Akeem Olatunde Arinkoola* 1؛ Eunice Folasade Oyelade2؛ Mariam Omowumi Alesinladu3؛ Azeez Gbolahan Akinyemi3؛ Solomon Oluyemi Alagbe3؛ Oladipupo Olaosebikan Ogunleye3 | ||
1Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria. Department of Chemical and Petroleum Engineering, First Technical University, Ibadan, Nigeria. | ||
2Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria. | ||
3Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria | ||
چکیده | ||
Green corrosion inhibitors, such as Luffa Cylindrica leaf extract, have demonstrated outstanding inhibitory efficiency on mild steel in acidic environments. However, their effective design and optimization are limited and time-consuming owing to the associated uncertainties. Quantifying these uncertainties remains a challenge due to the requirement of many model realisations to capture and represent the true distribution of uncertainty. This study built a Response Surface Model (RSM) approximation of corrosion inhibition efficiency (IE) for effective optimization and uncertainty propagation. To quantify the uncertainties, we explored two stochastic methods: Monte Carlo Simulation (MCS) and Markowitz classical theory with the Genetic Algorithm (GA). The two approaches differ in propagation, sampling, and the number of realizations. MCS uses the approximation RSM with 10,000 randomly generated realizations, whereas the Markowitz technique uses the mean-variance objective function with just 100 realizations. Markowitz's classical theory revealed a 50 and 99.9% chance that the IE of Luffa Cylindrica leaf extract is 79.7 and 76.5%, respectively while MCS indicates at least 10 and 90% probabilities that the IE of Luffa Cylindrica leaf extract is 85.16 and 74.14%, respectively. When compared to the 88.4% efficiency previously reported for the same extract, the two techniques indicate less than 10% chances for IE. As a result, for the actual implementation of green inhibitors, their assessment must include uncertainty analysis. | ||
کلیدواژهها | ||
Green Inhibitor؛ Inhibition Efficiency؛ Luffa Cylindrical؛ Monte Carlo Simulation؛ Uncertainty Analysis | ||
مراجع | ||
[1] Malaret F. Exact calculation of corrosion rates by the weight-loss method. Experimental Results. 2022; 3:1-12. doi: 10.1017/exp.2022.5. [2] Autolab M. Application Area: Corrosion Electrochemical Corrosion Studies of Various Metals. Corrosion. 2018;1-11. [3] Rybalka KV, Beketaeva LA, Davydov AD. Estimation of Corrosion Rate of AISI 1016 Steel by the Analysis of Polarization Curves and Using the Method of Measuring Ohmic Resistance. Russian Journal of Electrochemistry. 2021;57(1):16-21. doi: 10.1134/S1023193521010092. [4] Verma DK, Dewangan Y, Dewangan AK, Asatker A. Heteroatom-Based Compounds as Sustainable Corrosion Inhibitors: An Overview. Journal of Bio- Tribo-Corrosion. 2021;7(1). doi: 10.1007/s40735-020-00447-7. [5] Verma C, Ebenso EE, Quraishi MA, Hussain CM. Recent developments in sustainable corrosion inhibitors: Design, performance and industrial scale applications. Materials Advances. 2021;2(12):3806-3850. doi: 10.1039/d0ma00681e. [6] Ogunleye OO, Eletta OA, Arinkoola AO, Agbede OO. Gravimetric and quantitative surface morphological studies of Mangifera indica peel extract as a corrosion inhibitor for mild steel in 1 M HCl solution. Asia-Pacific Journal of Chemical Engineering. 2018;13(6). doi: 10.1002/apj.2257. [7] Alaiya MA, Odeniyi MA. Utilisation of Mangifera indica plant extracts and parts in antimicrobial formulations and as a pharmaceutical excipient: a review. Future Journal of Pharmaceutical Sciences. 2023;9(1). doi: 10.1186/s43094-023-00479-z. [8] Barghout NA, El Nemr A, Abd-El-Nabey BA, Fetouh HA, Ragab S, Eddy NO. Use of orange peel extract as an inhibitor of stainless-steel corrosion during acid washing in a multistage flash desalination plant. Journal of Applied Electrochemistry. 2023;53(2):379- 399. doi: 10.1007/s10800-022-01772-0. [9] Umoren SA, Eduok UM, Solomon MM, Udoh AP. Corrosion inhibition by leaves and stem extracts of Sida acuta for mild steel in 1 M H2SO4 solutions investigated by chemical and spectroscopic techniques. Arabian Journal of Chemistry. 2016;9: S209-S224. doi: 10.1016/j.arabjc.2011.03.008 [10] Omotioma M, Onukwuli OD. Evaluation of pawpaw leaves extract as anti-corrosion agent for aluminium in hydrochloric acid medium. Nigerian Journal of Technology. 2017;36(2):496. doi: 10.4314/njt. v36i2.24. [11] Olawale O, Idefoh CK, Ogunsemi BT, Bello JO. Evaluation of groundnut leaves extract as corrosion inhibitor on mild steel in 1m sulphuric acid using response surface methodology (RSM). International Journal of Mechanical Engineering and Technology. 2018;9(11):829- 841. [12] Valdez-Salas B, Mirabal-García SF, Villalobos-Noriega JM, Lizardi-Jiménez MA, Hernández-Cocoletzi H, Zamudio-Flores PB, et al. Azadirachta indica leaf extract as green corrosion inhibitor for reinforced concrete structures: Corrosion effectiveness against commercial corrosion inhibitors and concrete integrity. Materials (Basel). 2021;14(12). doi: 10.3390/ma14123326. [13] Loto CA, Loto RT, Popoola API. Effect of neem leaf (azadirachita indica) extract on the corrosion inhibition of mild steel in dilute acids. International Journal of Physical Sciences. 2011;6(9):2249-2257. doi: 10.5897/IJPS11.385. [14] Soltani N, Khayatkashani M. Gundelia tournefortii as a green corrosion inhibitor for mild steel in HCl and H2SO4 solutions. International Journal of Electrochemical Science. 2015;10(1):46-62. doi: 10.1016/s1452-3981(23)04974-x. [15] Ogunleye OO, Bamgbose JT, Odetoye TE, Olabisi AO. Green corrosion inhibition and adsorption characteristics of Luffa cylindrica leaf extract on mild steel in hydrochloric acid environment. Heliyon. 2020;6(1). doi: 10.1016/j.heliyon. 2020.e03205. [16] Roseline UP. World Journal of Engineering DESIGN, EVALUATION AND PREDICTION OF CORROSION RATES. World Journal of Engineering Research and Technology. 2023;9(9):14-29. [17] Zelinka SL. Uncertainties in corrosion rate measurements of fasteners exposed to treated wood at 100 % relative humidity. Journal of Testing and Evaluation. 2007;35(1):106-109. doi: 10.1520/jte100040. [18] Freeman RA, Silverman DC. Error propagation in coupon immersion tests. Corrosion. 1992;48(6):463-466. doi: 10.5006/1.3315961. [19] Rebak RB. Environmental Degradation of Engineered Barrier Materials in Nuclear Waste Repositories. Uhlig’s Corrosion Handbook. Third Edition. 2011;503-516. doi: 10.1002/9780470872864.ch36. [20] Fritz JD, Film Formation and CO2 Corrosion in the Presence of Acetic Acid. Thesis. 2004;1-97. [21] Stansbury EE, Buchanan RA. Fundamentals of Electrochemical Corrosion. Ohio, USA: American Technical Publishers Ltd; 2000. [22] Ogunleye OO, Eletta OA, Arinkoola AO, Bamgbose JT, Odetoye TE, Ayeni AO. Synthesis of green corrosion inhibitor for mild steel in acidic environment. Indian Chemical Engineer. 2020;62(1). doi: 10.1080/00194506.2019.1625815. [23] Mahadevan S, Liang B. Error and Uncertainty Quantification and Sensitivity Analysis in Mechanics Computational Models. International Journal of Uncertainty Quantification. 2011;1(2):147-161. doi: 10.1615/intjuncertaintyquantification. v1.i2.30. [24] Freeman RA. Error propagation and uncertainty analysis: Application to fault tree analysis. Process Safety Progress. 2020;39(2):1-12. doi: 10.1002/prs.12080. [25] Agarry SE, Oghenejoboh KM, Aworanti OA, Arinkoola AO. Biocorrosion inhibition of mild steel in crude oil-water environment using extracts of Musa paradisiaca peels, Moringa oleifera leaves, and Carica papaya peels as biocidal-green inhibitors: kinetics and adsorption studies. Chemical Engineering Communications. 2019;206(1). doi: 10.1080/00986445.2018.1476855. [26] Arinkoola AO, Onuh HM, Ogbe DO. Quantifying uncertainty in infill well placement using numerical simulation and experimental design: case study. Journal of Petroleum Exploration and Production Technology. 2016;6(2). doi: 10.1007/s13202-015-0180 [27] Carmona VB, Oliveira RM, Silva WT, Mattoso LH, Marconcini JM. Nanosilica from rice husk: Extraction and characterization. Industrial Crops and Products. 2013;43(1). doi: 10.1016/j.indcrop.2012.06.050. [28] Jiang Z, Apley DW, Chen W. Surrogate preposterior analyses for predicting and enhancing identifiability in model calibration. International Journal of Uncertainty Quantification. 2015;5(4):341-359. doi: 10.1615/Int.J.UncertaintyQuantification.2015012627. [29] Yuen KV, Ortiz GA. Bayesian nonparametric general regression. International Journal of Uncertainty Quantification. 2016;6(3):195-213. doi: 10.1615/Int.J.UncertaintyQuantification.2016016055. [30] Arnst M, Ponthot JP. An overview of nonintrusive characterization, propagation, and sensitivity analysis of uncertainties in computational mechanics. International Journal of Uncertainty Quantification. 2014;4(5):387-421. doi: 10.1615/Int.J.UncertaintyQuantification.2014006990. [31] Kerleguer B, Cannamela C, Garnier J. A Bayesian neural network approach to multi-fidelity surrogate modelling. International Journal of Uncertainty Quantification. 2023;1-20. doi: 10.1615/Int.J.UncertaintyQuantification.2023044584. [32] Mathelin L. Quantification of uncertainty from high-dimensional scattered data via polynomial approximation. Int. J. Uncertain. Quantif., vol. 4, no. 3, pp. 243–271, 2014, doi: 10.1615/Int.J.UncertaintyQuantification.2014008084. [33] Arinkoola AO, Ogbe DO. Examination of experimental designs and response surface methods for uncertainty analysis of production forecast: A Niger Delta case study. Journal of Petroleum Engineering. 2015; 2015:1-16. doi: 10.1155/2015/714541. [34] Wildey T, Gorodetsky AA, Belme AC, Shadid JN. Robust uncertainty quantification using response surface approximations of discontinuous functions. International Journal of Uncertainty Quantification. 2019;9(5):415-437. doi: 10.1615/Int.J.UncertaintyQuantification.2019026974. [35] Hessling JP, Svensson T. Propagation of uncertainty by sampling on confidence boundaries. International Journal of Uncertainty Quantification. 2013;3(5):421-444. doi: 10.1615/int.j.uncertaintyquantification.2012004275. [36] Gao X, Ying W, Zhang Z. An efficient numerical method for uncertainty quantification in cardiology models. International Journal of Uncertainty Quantification. 2019;9(3):275-294. doi: 10.1615/Int.J.UncertaintyQuantification.2019027857. [37] Ogbeiwi P, Stephen KD, Arinkoola AO. Robust optimisation of water flooding using an experimental design-based surrogate model: A case study of a Niger-Delta oil reservoir. Journal of Petroleum Science and Engineering. 2020;195. doi: 10.1016/j.petrol.2020.107824. [38] Ogbeiwi P, Stephen K, Arinkoola A. A surrogate-based approach to waterflood optimisation under uncertainty. In: ECMOR 2020 - 17th European Conference on the Mathematics of Oil Recovery. 2020. doi: 10.3997/2214-4609.202035076. [39] Bailey WJ, Couët B, Wilkinson D. Field optimization tool for maximizing asset value. Proceedings of the SPE Asia Pacific Conference on Integrated Modelling for Asset Management. 2004;227-236. doi: 10.2118/87026-ms. [40] Chen S, Li H, Yang D. Optimization of production performance in a CO2 flooding reservoir under uncertainty. Journal of Canadian Petroleum Technology. 2010;49(2):71-78. doi: 10.2118/133374-PA. [41] Olusegun SJ, Alaneme KK, Olusegun SJ. Corrosion inhibition performance of lignin extract of sunflower (Tithonia diversifolia) on medium carbon low alloy steel immersed in H2SO4 solution. Leonardo Journal of Sciences. 2012;1-13. http://ljs.academicdirect.org/. | ||
آمار تعداد مشاهده مقاله: 220 تعداد دریافت فایل اصل مقاله: 203 |