تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,112,427 |
تعداد دریافت فایل اصل مقاله | 97,216,197 |
A novel quasi-3D refined HSDT for static bending analysis of porous functionally graded Plates | ||
Journal of Computational Applied Mechanics | ||
مقاله 14، دوره 55، شماره 3، مهر 2024، صفحه 519-537 اصل مقاله (990.25 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jcamech.2024.372417.968 | ||
نویسندگان | ||
Rachid Slimani1؛ Abderrahmane Menasria2، 3؛ Mohamed Ali Rachedi2، 3؛ Chitour Mourad3؛ Salah Refrafi3؛ Ali Alselami Nimer* 4؛ Abdelhakim Bouhadra2، 3؛ Belgacem Mamen2، 3 | ||
1University of Tamanghasset, Faculty of Sciences & Technology, Sciences & Technology Department, BP 10034, Sersouf Tamanghasset 11000, Algeria | ||
2Materials and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department, BP 89, Sidi Bel Abbes 22000, Algeria | ||
3University of Khenchela, Faculty of Sciences and Technology, Civil Engineering Department, BP 1252 Road of Batna Khenchela, Khenchela 40000, Algeria | ||
4Civil Engineering Department, College of Engineering, Jazan University, Saudi Arabia | ||
چکیده | ||
In this paper a quasi-three-dimensional (3D) refined using a novel higher-order shear deformation theory is developed to examine the static bending with two different type porosity distribution of porous for advanced composite plates such as functionally graded plates. In this present theory, the number of unknowns and governing equations is reduced, takes into account the thickness stretching effect into transverse displacement, bending and shear, using a new shape function. The used plate theory approach satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor and the transverse shear strain and shear stress have a parabolic distribution across the thickness of the plates. The virtual work principle is used to obtain the equilibrium equations. An analytical approach based on the Navier solution is employed to obtain the solution for static bending of simply supported FGM plates. The proposed theory shows a good agreement for static bending of FGM plates with other literature results has been instituted of advanced composite plates. Numerical results are presented to show the effect of the material distribution, the power-law FG plates, the geometrical parameters and the porosity on the deflections and stresses of FG plates. | ||
کلیدواژهها | ||
Higher-order shear deformation theory؛ FG plate؛ P-FGM؛ E-FGM؛ Bending؛ Porosity؛ The virtual work principle؛ Navier solution | ||
مراجع | ||
[1] M. Dhuria, N. Grover, K. Goyal, Influence of porosity distribution on static and buckling responses of porous functionally graded plates, in Proceeding of, Elsevier, pp. 1458-1474.
[2] A. Bouhadra, A. Menasria, M. A. Rachedi, Boundary conditions effect for buckling analysis of porous functionally graded nanobeam, Advances in nano research, Vol. 10, No. 4, pp. 313-325, 2021.
[3] E. Reissner, Y. Stavsky, Bending and stretching of certain types of heterogeneous aeolotropic elastic plates, 1961.
[4] E. Arshid, A. R. Khorshidvand, Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method, Thin-Walled Structures, Vol. 125, pp. 220-233, 2018.
[5] L. Della Croce, P. Venini, Finite elements for functionally graded Reissner–Mindlin plates, Computer Methods in Applied Mechanics and Engineering, Vol. 193, No. 9-11, pp. 705-725, 2004.
[6] S. Trabelsi, A. Frikha, S. Zghal, F. Dammak, Thermal post-buckling analysis of functionally graded material structures using a modified FSDT, International Journal of Mechanical Sciences, Vol. 144, pp. 74-89, 2018.
[7] E. Carrera, Theories and finite elements for multilayered, anisotropic, composite plates and shells, Archives of computational methods in engineering, Vol. 9, pp. 87-140, 2002.
[8] E. Carrera, G. Giunta, P. Nali, M. Petrolo, Refined beam elements with arbitrary cross-section geometries, Computers & structures, Vol. 88, No. 5-6, pp. 283-293, 2010.
[9] M. Arefi, M. Kiani, A. M. Zenkour, Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak’s foundation via MCST, Journal of Sandwich Structures & Materials, Vol. 22, No. 1, pp. 55-86, 2020.
[10] W.-Y. Jung, W.-T. Park, S.-C. Han, Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory, International Journal of Mechanical Sciences, Vol. 87, pp. 150-162, 2014.
[11] A. Tounsi, A. Bouhadra, A. A. Bousahla, S. Mahmoud, A new and simple HSDT for thermal stability analysis of FG sandwich plates, Steel and Composite Structures, An International Journal, Vol. 25, No. 2, pp. 157-175, 2017.
[12] M. Mohamed, T. Abdelouahed, M. Slimane, A refined of trigonometric shear deformation plate theory based on neutral surface position is proposed for static analysis of FGM plate, Procedia Structural Integrity, Vol. 26, pp. 129-138, 2020.
[13] S. R. Bathini, A refined inverse hyperbolic shear deformation theory for bending analysis of functionally graded porous plates, Journal of Computational Applied Mechanics, Vol. 51, No. 2, pp. 417-431, 2020.
[14] A. Benachour, H. D. Tahar, H. A. Atmane, A. Tounsi, M. S. Ahmed, A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient, Composites Part B: Engineering, Vol. 42, No. 6, pp. 1386-1394, 2011.
[15] V. T. Do, V. V. Pham, H. N. Nguyen, On the development of refined plate theory for static bending behavior of functionally graded plates, Mathematical Problems in Engineering, Vol. 2020, pp. 1-13, 2020.
[16] R. B. Bouiadjra, A. Mahmoudi, S. Benyoucef, A. Tounsi, F. Bernard, Analytical investigation of bending response of FGM plate using a new quasi 3D shear deformation theory: Effect of the micromechanical models, Structural Engineering and Mechanics, An Int'l Journal, Vol. 66, No. 3, pp. 317-328, 2018.
[17] M. Bennoun, M. S. A. Houari, A. Tounsi, A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates, Mechanics of Advanced Materials and Structures, Vol. 23, No. 4, pp. 423-431, 2016.
[18] H. Bellifa, A. Bakora, A. Tounsi, A. A. Bousahla, S. R. Mahmoud, An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates, Steel and Composite Structures, An International Journal, Vol. 25, No. 3, pp. 257-270, 2017.
[19] F. Z. Taibi, S. Benyoucef, A. Tounsi, R. Bachir Bouiadjra, E. A. Adda Bedia, S. Mahmoud, A simple shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on elastic foundations, Journal of Sandwich Structures & Materials, Vol. 17, No. 2, pp. 99-129, 2015.
[20] A. M. Zenkour, Generalized shear deformation theory for bending analysis of functionally graded plates, Applied Mathematical Modelling, Vol. 30, No. 1, pp. 67-84, 2006.
[21] M. Bouazza, A. Boucheta, T. Becheri, N. Benseddiq, Thermal stability analysis of functionally graded plates using simple refined plate theory, International Journal of Automotive and Mechanical Engineering, Vol. 14, pp. 4013-4029, 2017.
[22] S. Merdaci, H. Belghoul, High-order shear theory for static analysis of functionally graded plates with porosities, Comptes Rendus Mécanique, Vol. 347, No. 3, pp. 207-217, 2019/03/01/, 2019.
[23] A. R. Khorshidvand, A. R. Damercheloo, Bending, axial buckling and shear buckling analyses of FG-porous plates based on a refined plate theory, Australian Journal of Mechanical Engineering, Vol. 21, No. 2, pp. 705-724, 2023.
[24] A. B. Rad, Static analysis of non-uniform 2D functionally graded auxetic-porous circular plates interacting with the gradient elastic foundations involving friction force, Aerospace Science and Technology, Vol. 76, pp. 315-339, 2018.
[25] I. J. Maknun, S. Natarajan, I. Katili, Application of discrete shear quadrilateral element for static bending, free vibration and buckling analysis of functionally graded material plate, Composite Structures, Vol. 284, pp. 115130, 2022.
[26] S. K. Sah, A. Ghosh, Influence of porosity distribution on free vibration and buckling analysis of multi-directional functionally graded sandwich plates, Composite Structures, Vol. 279, pp. 114795, 2022.
[27] L. T. Hai, N. Van Long, T. M. Tu, C. T. Binh, Post-buckling response of functionally graded porous plates rested on elastic substrate via first-order shear deformation theory, in Proceeding of, Springer, pp. 761-779.
[28] F. Abdoun, L. Azrar, Nonlinear thermal analysis of multilayered composite and FGM plates with temperature-dependent properties based on an asymptotic numerical method, Archive of Applied Mechanics, Vol. 91, No. 10, pp. 4361-4387, 2021.
[29] M. Di Sciuva, M. Sorrenti, Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended Refined Zigzag Theory, Composite Structures, Vol. 227, pp. 111324, 2019.
[30] M. W. Zaitoun, A. Chikh, A. Tounsi, M. A. Al-Osta, A. Sharif, S. U. Al-Dulaijan, M. M. Al-Zahrani, Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic–metal plate in a hygrothermal environment, Thin-Walled Structures, Vol. 170, pp. 108549, 2022.
[31] A. Bakoura, F. Bourada, A. A. Bousahla, A. Tounsi, K. H. Benrahou, A. Tounsi, M. M. Al-Zahrani, S. Mahmoud, Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method, Computers and Concrete, An International Journal, Vol. 27, No. 1, pp. 73-83, 2021.
[32] S. Refrafi, A. A. Bousahla, A. Bouhadra, A. Menasria, F. Bourada, A. Tounsi, E. A. Bedia, S. Mahmoud, K. H. Benrahou, A. Tounsi, Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations, Computers and Concrete, an International Journal, Vol. 25, No. 4, pp. 311-325, 2020.
[33] H. Werner, A three‐dimensional solution for rectangular plate bending free of transversal normal stresses, Communications in numerical methods in engineering, Vol. 15, No. 4, pp. 295-302, 1999.
[34] F. Y. Genao, J. Kim, K. K. Żur, Nonlinear finite element analysis of temperature-dependent functionally graded porous micro-plates under thermal and mechanical loads, Composite Structures, Vol. 256, pp. 112931, 2021.
[35] N. V. Nguyen, L. B. Nguyen, H. Nguyen-Xuan, J. Lee, Analysis and active control of geometrically nonlinear responses of smart FG porous plates with graphene nanoplatelets reinforcement based on Bézier extraction of NURBS, International Journal of Mechanical Sciences, Vol. 180, pp. 105692, 2020.
[36] A. Zenkour, Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate, Archive of Applied Mechanics, Vol. 77, No. 4, pp. 197-214, 2007.
[37] J. Mantari, C. G. Soares, Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates, Composite Structures, Vol. 94, No. 8, pp. 2561-2575, 2012.
[38] A. Ghorbanpour Arani, M. Zamani, Investigation of electric field effect on size-dependent bending analysis of functionally graded porous shear and normal deformable sandwich nanoplate on silica Aerogel foundation, Journal of Sandwich Structures & Materials, Vol. 21, No. 8, pp. 2700-2734, 2019.
[39] J. Mantari, C. G. Soares, A novel higher-order shear deformation theory with stretching effect for functionally graded plates, Composites Part B: Engineering, Vol. 45, No. 1, pp. 268-281, 2013.
[40] H.-T. Thai, S.-E. Kim, A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates, Composite Structures, Vol. 96, pp. 165-173, 2013.
[41] M. Al-Furjan, M. Xu, A. Farrokhian, G. S. Jafari, X. Shen, R. Kolahchi, On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag theories, Waves in Random and Complex Media, pp. 1-25, 2022.
[42] M. Al-Furjan, S. Fan, L. Shan, A. Farrokhian, X. Shen, R. Kolahchi, Wave propagation analysis of micro air vehicle wings with honeycomb core covered by porous FGM and nanocomposite magnetostrictive layers, Waves in Random and Complex Media, pp. 1-30, 2023. | ||
آمار تعداد مشاهده مقاله: 313 تعداد دریافت فایل اصل مقاله: 388 |