تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,859 |
تعداد دریافت فایل اصل مقاله | 97,232,054 |
مقایسه مدلهای اقلیمی CMIP6 و روشهای تصحیح اریبی نگاشت چندکی در شبیهسازی بارش | ||
تحقیقات آب و خاک ایران | ||
دوره 54، شماره 12، اسفند 1402، صفحه 1843-1862 اصل مقاله (2.44 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.362445.669538 | ||
نویسندگان | ||
نیما نعمتی شیشهگران؛ فریبا بابائیان؛ حجت میان آبادی* | ||
گروه مهندسی و مدیریت آب، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران | ||
چکیده | ||
به دلیل محدودیتهای ذاتی در مدلهای اقلیمی، خروجی آنها نسبت به مقادیر مشاهداتی دارای اریب قابل توجهی است که میتواند منجر به ارائه پیشنگریهای اقلیمی غیرقابل اعتماد گردد. در مطالعۀ حاضر عملکرد 10 مدل اقلیمی از مجموعه مدلهای CMIP6 در شبیهسازی بارش دورههای واسنجی (2005-1986) و صحتسنجی (2014-2006) برای محدودۀ مطالعاتی رفسنجان مورد ارزیابی قرار گرفت. به منظور اصلاح بارش شبیهسازی شده، روشهای مختلف تصحیح اریبی نگاشت چندکی در این دو دوره اعمال شده و ارزیابی عملکرد مدلهای مختلف، روشها و رویکردهای تصحیح اریبی نگاشت چندکی با استفاده از معیارهای آماری NSE، PBIAS، MAE و KGE و دیاگرام تیلور انجام شد. در نهایت، بارش شبیهسازی شده از مدل منتخب برای دورۀ پیشنگری تحت سناریوهای SSP1-2.6، SSP2-4.5 و SSP3-7.0 استخراج و این مقادیر با استفاده از روش مناسب تصحیح اریبی اصلاح شدند. نتایج نشان داد که مدل MPI-ESM1-2-LR قابلیت بالایی در شبیهسازی بارش در دورههای واسنجی و صحتسنجی نسبت به سایر مدلهای اقلیمی دارد. نتایج ارزیابی عملکرد روشهای تصحیح اریبی نگاشت چندکی نیز عملکرد بهتر روش bernlnorm را نسبت به سایر روشها در اصلاح بارش شبیهسازی شده در هر دو دوره توسط مدلهای اقلیمی نشان داد. همچنین، ماحصل ارزیابی رویکردهای نگاشت چندکی NTP، PT و DDT در این دورهها حاکی از توانمندی بالای رویکردهای NTP و PT نسبت به رویکرد DDT بود. مطالعه حاضر میتواند به بهبود اعتبار پیشنگریهای اقلیمی آینده با استفاده از مدلهای اقلیمی CMIP6 کمک کند. | ||
کلیدواژهها | ||
تغییر اقلیم؛ دورۀ پیشنگری؛ صحتسنجی؛ محدودۀ مطالعاتی رفسنجان؛ واسنجی | ||
عنوان مقاله [English] | ||
Comparison of CMIP6 climate models and quantile mapping bias correction methods in the simulation of precipitation | ||
نویسندگان [English] | ||
Nima Nemati Shishehgaran؛ Fariba Babaeian؛ Hojjat Mianabadi | ||
Department of Water Engineering and Management, Faculty of Agriculture, Tarbiat Modarres University, Tehran, Iran | ||
چکیده [English] | ||
Due to inherent limitations of global climate models, their outputs are significantly biased in comparison to observed values which could provide unreliable climate projections. This study evaluates the performance of 10 global climate models of the Coupled Model Intercomparison Project Phase 6 (CMIP6) for simulating precipitation in the Rafsanjan study area over calibration (1986-2005) and validation (2006-2014) period. For correcting simulated precipitation, various quantile mapping-based bias correction methods applied in these two periods. Evaluating the performance of various climate models and quantile mapping-based bias correction methods and approaches is carried out through multiple statistical metrics including NSE, PBIAS, MAE, and KGE as well as Taylor's diagram. Finally, simulated precipitation of selected model extracted for projection period under SSP1-2.6, SSP2-4.5 and SSP3-7.0 scenarios and corrected by suitable bias correction method. Results showed that the MPI-ESM1-2-LR model has better performance in simulating precipitation over calibration and validation periods compared to other climate models. The results of evaluating the performance of quantile mapping-based bias correction methods in both periods also showed that bernlnorm method performs better than others for the correction of simulated precipitation by climate models. In addition, the evaluation results of quantile mapping approaches including NTP, PT, and DDT in these periods demonstrated that NTP and PT have an acceptable performance compared to the DDT approach. Present study can help to improve the credibility of future climate projections using CMIP6 climate models. | ||
کلیدواژهها [English] | ||
Calibration, Climate change, Projection Period, Rafsanjan study area, Validation | ||
مراجع | ||
Ahmed, K., Sachindra, D. A., Shahid, S., Demirel, M. C., & Chung, E. S. (2019). Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics. Hydrology and Earth System Sciences, 23(11), 4803–4824. https://doi.org/10.5194/hess-23-4803-2019 Ajaaj, A. A., Mishra, A. K., & Khan, A. A. (2016). Comparison of BIAS correction techniques for GPCC rainfall data in semi-arid climate. Stochastic Environmental Research and Risk Assessment, 30(6), 1659–1675. https://doi.org/10.1007/s00477-015-1155-9 Babaeian, F., Bagheri, A., & Rafieian, M. (2016). Vulnerability Analysis of Water Resources Systems to Water Scarcity Based on a Water Accounting Framework (Case Study: Rafsanjan Study Area). Iran-Water Resources Research, 12(1), 1–17. (In Persian) Baker, N. C., & Huang, H. P. (2014). A comparative study of precipitation and evaporation between CMIP3 and CMIP5 climate model ensembles in semiarid regions. Journal of Climate, 27(10), 3731–3749. https://doi.org/10.1175/JCLI-D-13-00398.1 Block, P. J., Souza Filho, F. A., Sun, L., & Kwon, H. H. (2009). A streamflow forecasting framework using multiple climate and hydrological models. Journal of the American Water Resources Association, 45(4), 828–843. https://doi.org/10.1111/j.1752-1688.2009.00327.x Cannon, A. J. (2008). Probabilistic multisite precipitation downscaling by an expanded Bernoulli-gamma density network. Journal of Hydrometeorology, 9(6), 1284–1300. https://doi.org/10.1175/2008JHM960.1 Charlton, M. B., & Arnell, N. W. (2011). Adapting to climate change impacts on water resources in England-An assessment of draft Water Resources Management Plans. Global Environmental Change, 21(1), 238–248. https://doi.org/10.1016/j.gloenvcha.2010.07.012 Chen, J., Brissette, F. P., Chaumont, D., & Braun, M. (2013). Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resources Research, 49(7), 4187–4205. https://doi.org/10.1002/wrcr.20331 Chen, J., Brissette, F. P., Zhang, X. J., Chen, H., Guo, S., & Zhao, Y. (2019). Bias correcting climate model multi-member ensembles to assess climate change impacts on hydrology. Climatic Change, 153(3), 361–377. https://doi.org/10.1007/s10584-019-02393-x
Déqué, M., Rowell, D. P., Lüthi, D., Giorgi, F., Christensen, J. H., Rockel, B., Jacob, D., Kjellström, E., De Castro, M., & Van Den Hurk, B. (2007). An intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections. Climatic Change, 81(SUPPL. 1), 53–70. https://doi.org/10.1007/s10584-006-9228-x Diallo, I., Sylla, M. B., Giorgi, F., Gaye, A. T., & Camara, M. (2012). Multimodel GCM-RCM ensemble-based projections of temperature and precipitation over West Africa for the Early 21st Century. International Journal of Geophysics, 2012. https://doi.org/10.1155/2012/972896 Dore, M. H. I. (2005). Climate change and changes in global precipitation patterns: What do we know? Environment International, 31(8), 1167–1181. https://doi.org/10.1016/j.envint.2005.03.004 Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., & Liebert, J. (2012). HESS Opinions “should we apply bias correction to global and regional climate model data?” Hydrology and Earth System Sciences, 16(9), 3391–3404. https://doi.org/10.5194/hess-16-3391-2012 Enayati, M., Bozorg-Haddad, O., Bazrafshan, J., Hejabi, S., & Chu, X. (2021). Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. Journal of Water and Climate Change, 12(2), 401–419. https://doi.org/10.2166/wcc.2020.261 Estrela, T., Pérez-Martin, M. A., & Vargas, E. (2012). Impacts du changement climatique sur les ressources en eau en Espagne. Hydrological Sciences Journal, 57(6), 1154–1167. https://doi.org/10.1080/02626667.2012.702213 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016 Fang, G. H., Yang, J., Chen, Y. N., & Zammit, C. (2015). Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrology and Earth System Sciences, 19(6), 2547–2559. https://doi.org/10.5194/hess-19-2547-2015 Franchini, M., & Mannucci, P. M. (2015). Impact on human health of climate changes. European Journal of Internal Medicine, 26(1), 1–5. https://doi.org/10.1016/j.ejim.2014.12.008 Ghafouri Fard, S., Bagheri, A., & Shajari, S. (2015). Stakeholders Assessment in Water Sector (Case Study: Rafsanjan Area). Iran-Water Resources Research, 11(2), 16–28. (In Persian) Ggalami, V., Saghafian, B., Raziei, T. (2022). Investigating the Effect of Bias Correction on Quality Improvement of NEX-GDDP Downscaled Precipitation Data. Iran-Water Resources Research, 18(1), 68-83. (In Persian) Gudmundsson, L., Bremnes, J. B., Haugen, J. E., & Engen-Skaugen, T. (2012). Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – A comparison of methods. Hydrology and Earth System Sciences, 16(9), 3383–3390. https://doi.org/10.5194/hess-16-3383-2012 Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1–2), 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003 Hamed, M. M., Nashwan, M. S., Shahid, S., Ismail, T. bin, Wang, X. jun, Dewan, A., & Asaduzzaman, M. (2022). Inconsistency in historical simulations and future projections of temperature and rainfall: A comparison of CMIP5 and CMIP6 models over Southeast Asia. Atmospheric Research, 265, 1–38. https://doi.org/10.1016/j.atmosres.2021.105927 He, X., Chaney, N. W., Schleiss, M., & Sheffield, J. (2016). Spatial downscaling of precipitation using adaptable random forests. Water Resources Research, 52(10), 8217–8237. https://doi.org/10.1002/2016WR019034 Hong, J., Javan, K., Shin, Y., & Park, J. S. (2021). Future projections and uncertainty assessment of precipitation extremes in iran from the cmip6 ensemble. Atmosphere, 12(8), 1–16. https://doi.org/10.3390/ATMOS12081052 Im, E. S., Ahn, J. B., & Jo, S. R. (2015). Regional climate projection over South Korea simulated by the HadGEM2-AO and WRF model chain under RCP emission scenarios. Climate Research, 63(3), 249–266. https://doi.org/10.3354/cr01292 Jakob Themeßl, M., Gobiet, A., & Leuprecht, A. (2011). Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. International Journal of Climatology, 31(10), 1530–1544. https://doi.org/10.1002/joc.2168 Karimi, V., Karami, E., & Keshavarz, M. (2018). Climate change and agriculture: Impacts and adaptive responses in Iran. Journal of Integrative Agriculture, 17(1), 1–15. https://doi.org/10.1016/S2095-3119(17)61794-5 Kim, K. B., Kwon, H. H., & Han, D. (2015). Bias correction methods for regional climate model simulations considering the distributional parametric uncertainty underlying the observations. Journal of Hydrology, 530, 568–579. https://doi.org/10.1016/j.jhydrol.2015.10.015 Li, H., Sheffield, J., & Wood, E. F. (2010). Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. Journal of Geophysical Research Atmospheres, 115(10). https://doi.org/10.1029/2009JD012882 Li, Y., Jiang, Y., Lei, X., Tian, F., Duan, H., & Lu, H. (2018). Comparison of precipitation and streamflow correcting for ensemble streamflow forecasts. Water (Switzerland), 10(2), 1–17. https://doi.org/10.3390/w10020177 Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability (Switzerland), 13(3), 1–21. https://doi.org/10.3390/su13031318 Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themel, M., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., & Thiele-Eich, I. (2010). Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, 48(3), 1–34. https://doi.org/10.1029/2009RG000314 Mendez, M., Maathuis, B., Hein-Griggs, D., & Alvarado-Gamboa, L. F. (2020). Performance evaluation of bias correction methods for climate change monthly precipitation projections over Costa Rica. Water (Switzerland), 12(2). https://doi.org/10.3390/w12020482 Muerth, M. J., Gauvin St-Denis, B., Ricard, S., Velázquez, J. A., Schmid, J., Minville, M., Caya, D., Chaumont, D., Ludwig, R., & Turcotte, R. (2013). On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff. Hydrology and Earth System Sciences, 17(3), 1189–1204. https://doi.org/10.5194/hess-17-1189-2013 N’Tcha M’Po, Y. (2016). Comparison of Daily Precipitation Bias Correction Methods Based on Four Regional Climate Model Outputs in Ouémé Basin, Benin. Hydrology, 4(6), 58. https://doi.org/10.11648/j.hyd.20160406.11 Piani, C., Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P., Hagemann, S., & Haerter, J. O. (2010). Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. Journal of Hydrology, 395(3–4), 199–215. https://doi.org/10.1016/j.jhydrol.2010.10.024 Pour, S. H., Shahid, S., Chung, E. S., & Wang, X. J. (2018). Model output statistics downscaling using support vector machine for the projection of spatial and temporal changes in rainfall of Bangladesh. Atmospheric Research, 213(June), 149–162. https://doi.org/10.1016/j.atmosres.2018.06.006 Radcliffe, D. E., & Mukundan, R. (2017). PRISM vs. CFSR Precipitation Data Effects on Calibration and Validation of SWAT Models. Journal of the American Water Resources Association, 53(1), 89–100. https://doi.org/10.1111/1752-1688.12484 Salman, S. A., Nashwan, M. S., Ismail, T., & Shahid, S. (2020). Selection of CMIP5 general circulation model outputs of precipitation for peninsular Malaysia. Hydrology Research, 51(4), 781–798. https://doi.org/10.2166/NH.2020.154 Song, Y. H., Chung, E. S., & Shiru, M. S. (2020). Uncertainty analysis of monthly precipitation in GCMs using multiple bias correction methods under different RCPs. Sustainability (Switzerland), 12(18). https://doi.org/10.3390/su12187508 Su, X., Shao, W., Liu, J., & Jiang, Y. (2020). Multi-site statistical downscaling method using GCM-based monthly data for daily precipitation generation. Water (Switzerland), 12(3). https://doi.org/10.3390/w12030904 Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183–7192. Teutschbein, C., & Seibert, J. (2010). Regional climate models for hydrological impact studies at the catchment scale: A review of recent modeling strategies. Geography Compass, 4(7), 834–860. https://doi.org/10.1111/j.1749-8198.2010.00357.x Teutschbein, C., & Seibert, J. (2012). Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology, 456–457, 12–29. https://doi.org/10.1016/j.jhydrol.2012.05.052 van Ruijven, B. J., De Cian, E., & Sue Wing, I. (2019). Amplification of future energy demand growth due to climate change. Nature Communications, 10(1), 1–12. https://doi.org/10.1038/s41467-019-10399-3 Watts, N., Adger, W. N., & Agnolucci, P. (2015). Health and climate change: Policy responses to protect public health. In Environnement, Risques et Sante (Vol. 14, Issue 6, pp. 466–468). John Libbey Eurotext. https://doi.org/10.1016/S0140-6736(15)60854-6 Yang, X., Yu, X., Wang, Y., Liu, Y., Zhang, M., Ren, L., ... & Jiang, S. (2018). Estimating the response of hydrological regimes to future projections of precipitation and temperature over the upper Yangtze River. Atmospheric Research, 230, 104627. Yazdandoost, F., Moradian, S., Izadi, A., & Aghakouchak, A. (2021). Evaluation of CMIP6 precipitation simulations across different climatic zones: Uncertainty and model intercomparison. Atmospheric Research, 250(November), 105369. https://doi.org/10.1016/j.atmosres.2020.105369 Zarrin, A., & Dadashi-Roudbari, A. (2021). Projection of future extreme precipitation in Iran based on CMIP6 multi-model ensemble. Theoretical and Applied Climatology, 144(1–2), 643–660. https://doi.org/10.1007/s00704-021-03568-2. | ||
آمار تعداد مشاهده مقاله: 368 تعداد دریافت فایل اصل مقاله: 376 |