تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,511,707 |
تعداد دریافت فایل اصل مقاله | 98,774,169 |
بررسی اثر دما و سه زیرگونه از باکتری Bacillus thuringiensis بر تشکیل گره در سیستم ایمنی و برخی پارامترهای زیستی شبپره مدیترانهای آرد Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) | ||
کنترل بیولوژیک آفات و بیماری های گیاهی | ||
دوره 11، شماره 2، دی 1401، صفحه 135-152 اصل مقاله (1.43 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jbioc.2024.372232.332 | ||
نویسندگان | ||
علیرضا میرزایی پارسا1؛ مریم راشکی* 1؛ الهام رضوان نژاد2 | ||
1گروه تنوع زیستی، پژوهشکده علوم محیطی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران | ||
2گروه بیوتکنولوژی، پژوهشکده علوم محیطی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران | ||
چکیده | ||
باکتری بیمارگر حشرات،Bacillus thuringiensis ، گرم مثبت و اسپورزا است که تعداد زیادی از زیرگونههای آن شناسایی و معرفیشدهاست. پاسخهای ایمنی حشرات، پس از بلعیدن Bt یا پروتئینهای سمی آن فعالمیشود. هدف از این تحقیق، بررسی اثر دما و سه زیرگونة B. thuringiensis subspecies thuringiensis (Btt) ، B. thuringiensis subspecies aizawai (Bta) و B. thuringiensis subspecies galleriae (Btg) بر تشکیل گره طی پاسخ ایمنی و برخی پارامترهای زیستی شبپرة Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) بود. برای آلودهسازی بستر غذایی لارو، از غلظت 109 اسپور در میلیلیتر استفاده شد. این آزمایش در سه دمای مختلف (20، 25 و 30 درجة سلسیوس)، رطوبت نسبی 5±55 درصد و دورة نوری 16:8 (روشنایی: تاریکی) انجام شد. بهطور معنیدار بیشترین تعداد گره تحت تأثیر زیرگونههای Bta و Btg در دمای 30 درجةسلسیوس و کمترین میزان گره در شاهد در هر سه دما مشاهدهشد. مدت زمان تا شفیرهشدن، در هر دما بین سه زیرگونه اختلاف معنیدار نداشت. اما، بین دماهای مختلف در هر زیرگونه اختلاف معنیدار مشاهدهشد. همچنین، این مدت زمان در شاهد بهطور معنیدار تحت تأثیر دما قرارگرفت. بیشترین میزان تولید شفیره مربوط به دماهای 20 و 25 درجةسلسیوس در زیرگونة Bta و شاهد بود که با هم اختلاف معنیدار نداشتند. تعداد حشرات کامل بدستآمده در تیمار Bta مشابه شاهد تحت تأثیر دما قرار نگرفت. از آنجا که دما بر تعداد گرهها در شاهد تأثیری نداشت، چنین استنباط میشود که افزایش دما با تأثیر بر باکتری Bt، تعداد گرههای تشکیلشده را در لاروهای زندهمانده افزایش داده و همچنین، نوع زیرگونة باکتری بهطور معنیدار بر آن تأثیر داشته است. | ||
کلیدواژهها | ||
اسپور؛ باکتری بیمارگرحشرات؛ تشکیل گره؛ دما؛ کنترل بیولوژیک | ||
عنوان مقاله [English] | ||
Investigating the impact of temperature and three subspecies of Bacillus thuringiensis on the nodulation of the immune system and some biological parameters of the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) | ||
نویسندگان [English] | ||
Alireza Mirzaei Parsa1؛ Maryam Rashki1؛ Elham Rezvannejad2 | ||
1Department of Biodiversity, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran | ||
2Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran | ||
چکیده [English] | ||
The entomopathogenic bacterium,Bacillus thuringiensis, is a gram-positive and spore-forming bacterium, and a large number of its subspecies have been identified and introduced. The insect immune responses activate after ingesting Bt or its toxin proteins. This research aimed to investigate the effect of temperature and three subspecies including B. thuringiensis subspecies thuringiensis (Btt), B. thuringiensis subspecies aizawai (Bta), and B. thuringiensis subspecies galleriae (Btg) on nodule formation and some biological parameters of the moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). A concentration of 109 spore/ml was used to contaminate the larval diet. This experiment was performed at three different temperatures (20, 25, and 30 ºC), relative humidity of 55±5%, and a photoperiod of 16:8 (L: D). The highest number of nodules was significantly observed in Bta and Btg treatments at 30 ºC and the lowest number of nodules was observed in the control. There was no significant difference in the time until pupation at any temperature among the three subspecies. However, a significant difference was observed between different temperatures in each subspecies. Therefore, this duration in the control was significantly affected by temperature. The highest amount of pupa production was related to the temperatures of 20 and 25 ºC in subspecies Bta and the control that had no significant difference. The number of adults obtained in the Bta treatment was not affected by the temperature, similar to the control. Since the temperature did not affect the number of nodules in the control, it is concluded that increasing the temperature by affecting the Bt increased the number of the nodules formed in the surviving larvae and also, the subspecies kind of the bacterium had a significant effect on it. | ||
کلیدواژهها [English] | ||
Spore, entomopathogenic bacterium, nodulation, temperature, biological control | ||
مراجع | ||
Alves, S.B. (1998). Controle microbiano de insetos, Fundação de Estudos Agrários Luiz de Queiroz, Piracicaba. Bajwa, W. I., & Kogan, M. (2000) An interactive knowledge-based system for integrated codling moth management. In M. Shenk & M. Kogan (Eds.), IPM in Oregon: Achievements and future directions (pp. 211-226). Corvallis, Oregon: Oregon State University. Bauerfeind, S. S., & Fischer, K. (2014). Integrating temperature and nutrition-environmental impacts on an insect immune system. Journal of Insect Physiology, 64, 14–20. BenFarhat-Touzri, D., Driss, F., & Tounsi, S. (2016). A promising HD133-like strain of Bacillus thuringiensis with dual efficiency to the two Lepidopteran pests: Spodoptera littoralis (Noctuidae) and Ephestia kuehniella (Pyralidae). Toxicon, 118, 112-120. Borges, A., Santos, P.N., Furtado, A.F., & Figueiredo, R.C.B.Q. (2008). Phagocytosis of latex beads and bacteria by hemocytes of the triatomine bug Rhodnius prolixus (Hemiptera: Reduvidae). Micron, 39(4), 486-494. Carriere, Y., Showalter, A. M., Fabrick, J. A., Sollome, J., Ellers–Kirk, C., & Tabashnik B. E. (2009). Cadherin gene expression and effects of Bt resistance on sperm transfer in pink bollworm. Journal of Insect Physiology, 55, 1058-1064. Contreras, E., Benito-Jardon, M., Lopez-Galiano, M. J., Real, M. D., & Rausell, C., 2015. Tribolium castaneum immune defense genes are differentially expressed in response to Bacillus thuringiensis toxins sharing common receptor molecules and exhibiting disparate toxicity. Developmental and Comparative Immunology, 50, 139–145. Curwen, B., Palmer, S., & Ruddell, P. (2000). Brief cognitive behaviour therapy (Brief Therapies Series). London: Sage. Dequech, S. T. B., Silva, R. F. P., & Fiuza, L. M. (2005). Interação entre Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), Campoletis flavicincta (Ashmead) (Hymenoptera: Ichneumonidae) e Bacillus thuringiensis aizawai, em laboratório. Neotropical Entomology, 34(6), 937–944. Dubovskiy, I. M., Grizanova, E. V., Whitten, M. M. A., Mukherjee, K., Greig, C., Alikina, T., Kabilov, M., Vilcinskas, A., Glupov, V. V., & Butt, T. M. (2016). Immuno-physiological adaptations confer wax moth Galleria mellonella resistance to Bacillus thuringiensis. Virulence 7, 860–870. El Khoury, M., Azzouz, H., Chavanieu, A., Abdelmalak, N., Chopineau, J., & Awad, M. K. (2014). Isolation and characterization of a new Bacillus thuringiensis strain Lip harboring a new cry1Aa gene highly toxic to Ephestia kuehniella (Lepidoptera: Pyralidae) larvae. Archives of Microbiology, 196(6), 435-444. Franssens, V., Smagghe, G., Simonet, G., Claeys, I., Breugelmans, B., De Loof, A., & Broeck, J. V. (2006). 20-Hydroxyecdysone and juvenile hormone regulate the laminarin-induced nodulation reaction in larvae of the flesh fly, Neobellieria bullata. Developmental and Comparative Immunology, 30(9), 735-740. Hagstrum, D., Klejdysz, T., Subramanyam, B., & Nawrot, J. (2013). Atlas of stored-product insects and mites, advancing grain science worldwide, Minnesota, USA: AACC International Press. Itoua-Apoyolo, C., Drif, L., Vassal, J. M., Debarjac, H., Bossy, J. P., Leclant, F., & Frutos, R. (1995) Isolation of Multiple Subspecies of Bacillus thuringiensis from a Population of the European Sunflower Moth, Homoeosoma nebulella. Applied and Environmental Microbiology, 61(12): 4343-4347. Kalman, S. K., Kiehne, L., Libs, J. L., & Yamamoto, T. (1993). Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Applied and Environmental Microbiology, 59 (4), 1131-1137. Korkmaz, E., Altun, N., & Faiz, Ö. (2022). Effects of diet on phenoloxidase activity and development of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) Larvae. Biological Bulletin of Russian Academy of Science, 49 (Supplementary 1), S189–S197. Kurtulus¸ A., Pehlivan, S., Achiri, T. D., & Atakan, E. (2020). Influence of different diets on some biological parameters of the Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Stored Products Research 85, 101554. Li, L., Chen, Z., & Yu, Z. (2017). Mass production, application and market development of Bacillus thuringiensis biopesticides in China. In L. M. Fiuza, R. A. Polanczyk & N. Crickmore (Eds.), Bacillus thuringiensis and Lysinibacillus sphaericus characterization and use in the field of biocontrol (pp. 185-212). Switzerland: Springer. Lu, Y., Wu, K., Jiang, Y., Guo, Y., & Desneux, N. (2012). Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature, 487, 362-365. Mostafa, A., Fields, P., & Holliday, N. (2005). Effect of temperature and relative humidity on the cellular defense response of Ephestia kuehniella larvae fed Bacillus thuringiensis. Journal of invertebrate pathology, 90 (2), p. 79-84. Nation J. L. (2016). Insect physiology and biochemistry. Third Edition. Florida: CRC Press, Boca Raton. Panwar, B.S., Kaur, J., Kumar, P., & Kaur, S. (2018). A novel cry52Ca1 gene from an Indian Bacillus thuringiensis isolate is toxic to Helicoverpa armigera (cotton boll worm). Journal of Invertebrate Pathology, 159, 137–140. Pinos, D., Andrés-Garrido, A., Ferré, J., & Hernández-Martíneza, P. (2021). Response mechanisms of invertebrates to Bacillus thuringiensis and its pesticidal proteins. Microbiology and Molecular Biology Reviews, 85(1), e00007-20. Rabinovitch, L., Vivoni, A. M., Machado, V., Knaak, N., Berlitz, D. L., Polanczyk, R. A., & Fiuza, L. M. (2017). Bacillus thuringiensis characterization: morphology, physiology, biochemistry, pathotype, cellular, and molecular aspects. In L. M. Fiuza, R. A. Polanczyk & N. Crickmore (Eds.), Bacillus thuringiensis and Lysinibacillus sphaericus characterization and use in the field of biocontrol (pp. 1-18). Switzerland: Springer. Rahman, M. M., Roberts, H.L.S., & Schmidt, O. (2007). Tolerance to Bacillus thuringiensis endotoxin in immune-suppressed larvae of the flour moth Ephestia kuehniella. Journal of Invertebrate Pathology, 96(2), 125-132. Seifinejad, A., Salehi Jouzani, G. R., Hosseinzadeh, A., & Abdmishani, C. (2008). Characterization of Lepidoptera-active Cry and Vip genes in Iranian Bacillus thuringiensis strain collection. Biological Control, 44, 216–226. Shapiro-Ilan, D. I., Fuxa, J. R., Lacey, L. A., Onstad, D. W., & Kayae, H. K. (2005). Definitions of pathogenicity and virulence in invertebrate pathology. The Journal of Invertebrate Pathology, 88:1–7. Silva, M. C., Siqueira, H. A. A., Marques, E. J., Silva, L. M., Barros, R., Lima Filho, J. V. M., & Silva, S. M. F.A. (2012). Bacillus thuringiensis isolates from northeastern Brazil and their activities against Plutella xylostella (Lepidoptera: Plutellidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae). Biocontrol Science and Technology, 22(5), 583-599. Silva, M.C., Siqueira, H. A. A., Silva, L. M., Marques, E. J., & Barros, R. (2015). Cry proteins from Bacillus thuringiensis active against diamondback moth and fall armyworm. Neotropical Entomology, 44(4), 392-401. Stanley, D. W., & Miller, J. S. (2006). Eicosanoid actions in insect cellular immune functions. Entomologia Experimentalis et Applicata, 119, 1–13. Tabashnik, B., Van Rensburg, J. B. J., & Carriere, Y. (2009). Field-evolved insect resistance to Bacillus thuringiensis crops: definition, theory and data. Journal of Economic Entomology, 92, 2011-2025. Vilcinskas, A., & Matha, V. (1997). Effects of entomophatogenic fungus Metarhizium anisopliae and its secondary metabolites on morphology and cytosceleton of plasmatocytes isolated from the greater wax moth Galleria mellonella. Journal of Insect Physiology, 43, 1149-1159. Washburn, J. O., Haas-Stapleton, E. J., Tan, F. F., Beckage, N. E., & Volkman, L. E. (2000). Co-infection of Manduca sexta larvae with polydnavirus from Cotesia congregata increases susceptibility to fatal infection by Autographa californica M Nucleopolyhedrovirus. Journal of Insect Physiology, 46, 179–190. Wei, J., Yang, S., Chen, L., Liu, X., Du, M., An, S., & Liang, G. (2018). Transcriptomic responses to different Cry1Ac selection stresses in Helicoverpa armigera. Frontiers in Physiology, 9, 1653. Wraight, S. P., Molloy, D., Jamnback, H., & McCoy, P. (1981). Effects of temperature and instar on the efficacy of Bacillus thuringiensis var. israelensis and Bacillus sphaericus strain 1593 against Aedes stimulans larvae. Journal of Invertebrate Pathology, 38(1), 78-87. Wu, G., & Yi, Y. (2018). Transcriptome analysis of differentially expressed genes involved in innate immunity following Bacillus thuringiensis challenge in Bombyx mori larvae. Molecular Immunology, 103, 220–228. Yılmaz, S., Ayvaz, A., Akbulut, M., Azizoglu, U., & Karabörklü, S. (2012). A novel Bacillus thuringiensis strain and its pathogenicity against three important pest insects. Journal of Stored Products Research, 51, 33-40. Yilmaz, S., Karabörklü, S., Azizoğlu, U., Ayvaz, A., Akbulut, M., & Yildiz, M. (2013). Toxicity of native Bacillus thuringiensis isolates on the larval stages of pine processionary moth Thaumetopoea wilkinsoni at different temperatures. Turkish Journal of Agriculture and Forestry, 37, 163-172. Zhang, Y., Ma, Y., Wan, P.-J., Mu, L.-L., & Li, G.-Q. (2013). Bacillus thuringiensis insecticidal crystal proteins affect lifespan and reproductive performance of Helicoverpa armigera and Spodoptera exigua adults. Journal of Economic Entomology, 106(2), 614-621. Zhao, M., Yuan, X., Wei, J., Zhang, W., Wang, B., Khaing, M. M., & Liang, G. (2017). Functional roles of cadherin, aminopeptidase-N and alkaline phosphatase from Helicoverpa armigera (Hübner) in the action mechanism of Bacillus thuringiensis Cry2Aa. Science Report, 7, 46555. Zhu, L., Tian, L. J., Zheng, J., Gao, Q. L., Wang, Y. Y., Peng, D. H., & Sun, M. (2015). Complete genome sequence of Bacillus thuringiensis serovar galleriae strain HD-29, a typical strain of commercial biopesticide. Journal of Biotechnology, 19, 108-109. | ||
آمار تعداد مشاهده مقاله: 110 تعداد دریافت فایل اصل مقاله: 134 |