تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,124,282 |
تعداد دریافت فایل اصل مقاله | 97,232,751 |
بررسی کاربرد اسید هومیک و سطوح مختلف آبیاری بر برخی ویژگیهای فیزیکی، شیمیایی و بیولوژی خاک در کشت فلفل دلمهای | ||
تحقیقات آب و خاک ایران | ||
دوره 54، شماره 12، اسفند 1402، صفحه 1929-1943 اصل مقاله (1.62 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.365880.669582 | ||
نویسندگان | ||
مهتاب روشنیان1؛ افسانه عالی نژادیان بیدآبادی* 2؛ عباس ملکی3؛ امیر لکزیان4 | ||
1گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران، | ||
2گروه علوم و مهندسی خاک دانشکده کشاورزی دانشگاه لرستان خرم آباد ایران | ||
3گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه لرستان،خرم آباد، ایران | ||
4گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه فردوسی، مشهد، ایران | ||
چکیده | ||
اسید هومیک میتواند با بهبود ساختمان خاک و نگهداری آب در خاک، سبب بهبود جذب آب توسط گیاهان شود. این ویژگی سبب شده تا کاربرد اسید هومیک در خاکهای مناطق خشک مورد توجه قرار بگیرد. بر این اساس مطالعهی حاضر با هدف بررسی اثر همزمان اسید هومیک و کمآبیاری بر ویژگیهای فیزیکوشیمیایی و بیولوژیکی خاک زیر کشت فلفل دلمهای به صورت آزمایش فاکتوریل در قالب طرح بلوکهای کامل تصادفی با سه سطح اسید هومیک صفر (HA0))، 2 (((HA20 و 4 (HA40) گرم بر گلدان) و چهار سطح آبیاری (60 (L60)، 80 (L80)، 100 (L100) و 120 ((L120 درصد از تخلیه رطوبتی خاک)، در گلخانهی تحقیقاتی دانشگاه پیام نور بجنورد به صورت گلدانی با چهار تکرار انجام شد. نتایج نشان داد تیمارهای L80HA40، L100HA40 و L120HA40 بیشترین تاثیر را در بهبود خصوصیات فیزیکی خاک نظیر AS (پایداری خاکدانه)، و کاهش PAD (در صد تخریب خاکدانهها) داشتند. همچنین با افزایش میزان اسید هومیک، فعالیت آنزیمهای اورهآز، فسفاتاز اسیدی و قلیایی در تیمار L80 افزایش و در تیمارهای L100 و L120 کاهش یافت. بنابراین بیشترین مقدار آنزیمهای اورهآز، آلکالین فسفاتاز و اسید فسفاتاز، (678/98 μg NH4+-N g-1 dry soil 2h-1) ، 54/845 و 30/671 (µg PNP g−1 dry soil h−) در L80H40 مشاهده شد که به ترتیب 6/4، 9/5، 8/2 و 0/6 برابر بیشتر از تیمار L60HA0بودند، با افزایش مقدار اسید هومیک و افزایش سطوح آبیاری تا L100، مقادیر تنفس افزایش و سپس در L120 کاهش یافتند، با این وجود فعالیت میکروبی و به دنبال آن تنفس در L80 با L100 تفاوت معنیداری نداشتند. | ||
کلیدواژهها | ||
آنزیم فسفاتاز اسیدی و قلیایی؛ اورهآز خاک؛ پایداری خاکدانهها؛ فعالیت آنزیمی خاک | ||
عنوان مقاله [English] | ||
Investigating the application of humic acid and irrigation levels on some physical, chemical, and biological properties of the soil under bell pepper cultivation | ||
نویسندگان [English] | ||
Mahtab Roshaniyan1؛ Afsaneh Alinejadian-Bidabadi2؛ Abbas Maleki3؛ Amir Lakzian4 | ||
1Department of Soil Science,, Faculty of Agriculture, Lorestan University, Khoramabad, Iran | ||
2Assistant professor, department of science and engineering faculty of agriculture, lorestan university. Khoram abad, Iran | ||
3Department of Water Engineering, Faculty of Agriculture, Lorestan University, Khoramabad, Iran | ||
4Department of Soil Science, Faculty of Agriculture, Ferdowsi University, Mashhad, Iran. | ||
چکیده [English] | ||
Humic acid can improve water absorption by plants by improving soil structure and water retention in soil. These characteristics have caused the use of humic acid in the soils of dry areas to be considered. This study aimed to investigate the simultaneous effect of humic acid and deficit irrigation on soil physical and biological properties under the cultivation of bell pepper. A factorial-based experiment in a randomized complete design was carried out with three levels of humic-acid (0 (HA0), 2 (HA20), and 4 (HA40) g per pot) and four irrigation levels (60 (L60), 80 (L80), 100 (L100), 120 (L120), (percent of soil moisture depletion) with three replications in the research greenhouse of Payam Noor Bojnourd University. The results showed that the best treatments for improving soil physical properties, AS (aggregate stability), and decreasing PAD (percentage of aggregate destruction)), were L80HA40, L100HA40, and L120HA40 treatments. Also, by increasing the dose of HA and increasing the irrigation level up to L80, the activity of urease, alkaline phosphatase, and acid phosphatase enzymes increased and then decreased in L100 and L120.Therefor the highest amount of urease, alkaline phosphatase, and acid phosphatase enzymes (μg NH4+-N g-1 dry soil 2h-1) 678.98, 845.54 671.30 (μg PNP g−1 dry soil h -) were observed in L80L40, which were to be 4.6, 5.9, 2.8 and 0.6 times more than L60HA0 treatment, respectively. By increasing the amount of humic acid and increasing the irrigation levels up to L100, respiration rates increased and then decreased at L120, however, microbial activity followed by respiration at L80 and L100 were not significantly different. | ||
کلیدواژهها [English] | ||
Alkaline and acid phosphatase enzymes, Soil urease, Aggregate stability, Soil enzyme activity | ||
مراجع | ||
Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. Academic Press, London, UK. Amiołkowska, A., Buczkowska, H., & Thanoon, A. H. (2016). Effect of biological preparations on content of saccharides in sweet pepper fruits. Acta Scientiarum Polonorum Hortorum Cultus, 15, 65- 75. Arvidsson, J. & Bolenius, E. (2006). Effect of soil water content during primary tillage-laser measurements of soil surface changes. Soil & Tillage Research, 90, 222-229. doi:10.1016/j.still.2005.09.005. Asik, B. A., Turan, M. A., Celic, H., & Katkat, A. V. (2009). Effects of humic substances on plant growth and mineral nutrients uptake of wheat (Triticum durum cv. Salihli) under conditions of salinity. Asian Journal. Crop Science, 1(2), 87-95. doi: 10.3923/ajcs.2009.87.95. Asri, F. O., Demirtas, E. I., & Ari, N. (2015). Changes in fruit yield, quality and nutrient concentrations in response to soil humic acid applications in processing tomato. Bulgarian. Journal of Agricultural Science, 21, 585–591. Bacilio, M., Moreno, M., & Bashan, Y. (2016). Mitigation of negative effects of progressive soil salinity gradients by application of humic acids and inoculation with Pseudomonas stutzeri in a salt-tolerant and a salt-susceptible pepper. Applied Soil Ecology, 107, 394-404. doi: 10.1016/j.apsoil.2016.04.012. Bai, N., Zhang, H., Li, S., Zheng, X., Zhang, J., Zhang, H., Zhou, S., Sun, H., & Lv, W. (2019). Long-term effects of straw and straw-derived biochar on soil aggregation and fungal community in a rice–wheat rotation system. PeerJ, 6, e6171. doi: 10.7717/peerj.6171. Bhati, J., Chaduvula, P. K., Kumar, S., & Rai, A. (2013). Phylogenetic analysis and secondary structure prediction for drought tolerant Cap binding proteins of plant species. Indian journal of agricultural sciences, 83(1), 21-5. Biglouie, M. H., Assimi, M. H. & Akbarzadeh, A. (2010). Effect of water stress at different stages on quantity and quality traits of Virginia (flue cured) tobacco type. Journal of Plant and Environment, 2, 67-75. doi: 10.17221/163/2009-PSE. Billingham, K. L. (2012). Humic products potential or presumption for agriculture? Can humic products improve my soil? Proceedings of the 27th Annual Conference of The Grassland Society of NSW. 43-50. Blanco-Canqui, H., Lal, R., Post, W. M., Izurralde, R. C., & Owens, L. B. (2006). Soil structure parameters and organic carbon in no till corn with variable stover retention rates. Soil Science, 171, 468-482. doi:10.1016/j.still.2007.01.004. Brennan R. F., Armour J. D., & Reuter, D. J. (1993). Diagnosis of zinc deficiency. In A.D. Robson (ed.) Zinc in Soils and Plants, P206. Springer, Netherlands. p. 167-181. Burns R. G. (1982). Enzyme activity in soil location and a possible role in microbial ecology. Soil Biology and. Biochemistry, 14, 423-428. doi:10.1007/978-94-011-0878-2_12. Chen, X., Condron, L. M., Dunfield, K. E., Wakelin, S. A., & Chen, L. (2021). Impact of grassland afforestation with contrasting tree species on soil phosphorus fractions and alkaline phosphatase gene communities. Soil Biology and Biochemistry, 159, 108274. doi:10.1016/j.soilbio.2021.108274. Chen, Y., Shi, J., Tian, X., Jia, Z., Wang, S., Chen, J., & Zhu, W. (2019). Impact of dissolved organic matter on Zn extractability and transfer in calcareous soil with maize straw amendment. Journal Soils Sediment, 19(2), 774–784. https://doi.org/10.1007/s11368-018-2060-x. Christenen, B. T., & Johnston, A. E. (1997). Soil organic matter and soil quality lessins learned from long-term experiments at Askov and Rothamsted.p 157-159, In;E.G. Gregorich and M.R. Catrer, Soil Quality for Crop Production and Ecosystem Healthm Elsevierm Amesterdam, https://doi.org/10.1016/S0166-2481(97)80045-1. Dad, K., Nawaz, M., Hassan, R., Javed, K., Shaheen, A., Zhao, F., & Aurangzaib, M. (2021). Impact of biochar on the growth and physiology of tomato grown in the cadmium contaminated soil. Pakistan Journal of Agricultural Research, 34(2), 454-462. http://dx.doi.org/10.17582/journal.pjar/2021/34.2.454.462 Dada, O.A. & Ogunsesu, Y.O. (2016). Growth analysis and fruit yield of Capsicum chinense, Jacquin as influenced by compost applied as foliar spray and soil augmentation in Ibadan, southwestern Nigeria Journal of Agriculture and Sustainability, (9), 83-103. Denaxa, N. K., Roussos, P. A., Damvakaris, T. & Stournaras, V. (2012). Comparative effects of exogenous glycine betaine, kaolin clay particles and Ambiol on photosynthesis, leaf sclerophylly indexes and heat load of olive cv. Chondrolia Chalkidikis under drought. Scientia Horticulture, 137, 87-94.doi:10.1016/j.scienta.2012.01.012. Dursun, A., I. Guvenc & Turan, M. (2002). Effects of different levels of humic acid on seedling growth and macro and micronutrient contents of tomato and eggplant. Acta Agrobotanica, 56, 81-88. https://doi.org/10.5586/aa.2002.046. Fan, H., Wang, X. W., Sun, X. & Li, Y. (2014). Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in chrysanthemum. Scientia Horticulturae, 177, 118-123.doi:10.1016/j.scienta.2014.05.010. Emerson, W. W., (1977). Physical properties and structure. In: Soil factors and crop production in semi-arid environment. (ed: Russel J. S. - Greacen E. L.) University of Queensland Press p. 78-104. Fu, B., Chen, L., Huang, H., Qu, P., & Wei, Z. (2021). Impacts of crop residues on soil health: A review. Environmental Pollutants and Bioavailability, 33(1), 164-173. http://dx.doi.org/10.1080/26395940.2021.1948354. Ganefianti, D. W., Fahrurrozi, F. & Armadi, Y. (2017). Hybrid performance testing of chilli pepper (Capsicum annum L.) for resistance to yellow leaf curl begomo virus growth in lowland environment. SABRAO Journal of Breeding and Genetics, 49(2), 171-191. Gao, S., DeLuca, T. H., & Cleveland, C. C. (2019). Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta-analysis. Science of Total Environment, 654, 463e472. https://doi.org/10.1016/j.scitotenv.2018.11.124. Garcia, A. C., Santos, L. A., Izquierdo, F. G., Sperandio, M. V. L., Castro, R.N., & Berbara, R. L. L. (2012). Humic acids of vermicompost as an ecological pathway to increase resistance of rice seedlings to water stress. African Journal of Biotechnology, 47, 203-208. http://dx.doi.org/10.5897/AJB11.1960. Garg, S. H., & Bahl G. S. (2008). Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soil. Bioresource Technology, 99, 5773-5777. https://doi.org/10.1016/j.biortech.2007.10.063. Gee, G. W., & Bauder, J. W. (1986). Particle size analysis. P 383-411, In: A. Klute (ed.), Methods of soil analysis, 2nd ed. Agron. Monogr. 9. ASA. Madision. Guo, Y., Ma, Z., Ren, B., Zhao, B., Liu, P., & Zhang, J. (2022). Effects of humic acid added to controlled-release fertilizer on summer maize yield, nitrogen use efficiency and greenhouse gas emission. Agriculture, 12(4), 448. https://doi.org/10.3390/agriculture12040448 Hale, L., Curtis, D., Azeem, M., Montgomery, J., Crowley, D. E., & McGiffen, M. E. (2021). Influence of compost and biochar on soil biological properties under turfgrass supplied deficit irrigation. Applied Soil Ecology, 168. doi:10.1016/j.apsoil.2021.104134. Harper S. M., Kerven G. L., Edwards D. G., & Ostatek-Boczynski, Z. (2000). Characterisation of fulvic and humic acids from leaves of Eucalyptus camaldulensis and from decomposed hay. Soil Biology and Biochemistry, 32(10), 1331-1336. doi:10.1016/S0038-0717(00)00021-3. Hartwigsen, J. A., & Evans, M. R. (2000). Humic Acid Seed and Substrate Treatments Promote Seedling Root Development. HortScience, 35(7), 1231–1233. doi:10.21273/HORTSCI.35.7.1231. Huisz, A., Toth, T., & Nemeth, T. (2009). Normalized stability index and mean weight diameter in a combined nitrogen fertilization x irrigation experiment on Hungarian chernozem soil. Cereal Research Communications, 37, 443-446. VIII. Alps-Adria Scientific Workshop Laboratory.Royal Soc. Chem, doi: 10.1556/443 CRC.37.2009.Suppl.3. Kafi, M., Burzui, A., Salehi, M., Camandi, A., Masumi, A., & Nabati, A. (2009). Physiology of Environmental Stress in Plants. Publications University of Mashhad, 388 p. (In Persian). Kemper, W. D. & Rosenau, K. (1986). Size distribution of aggregates. Pp: 425- 442. In: Klute, A. (ed.), Methods of Soil Analysis, Part 1. ASA, Madison, WI. Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P. C. & Sohrabi, Y. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Austraian Journal Science, 4: 580-585. Manas, D., Bandopadhyay, P. K., Chakravarty, A., Pal, S., & Bhattacharya, A. (2014). Effect of foliar application of humic acid, zinc and bo-ron on biochemical changes related to productivity of pungent pepper (Capsicum annuum L.). Plant Science, 2(1), 53 – 66. doi:10.5897/AJPS2014.1155. Mindari, W., Sasongko, P. E., Kusuma, Z., Syekhfani, S., & Aini, N. (2018,). Efficiency of various sources and doses of humic acid on physical and chemical properties of saline soil and growth and yield of rice. The 9th International Conference on Global Resource Conservation (ICGRC) and AJI from Ritsumeikan University. AIP Conf. Proc. 2019, 030001-1–030001-8; https://doi.org/10.1063/1.5061854. Nahar, S., Sahoo, L. & Tanti, B. (2018). Screening of drought tolerant rice through morphophysiological and biochemical approaches. Biotechnology Agriculture, 17, 1878-2001. doi:10.1016/j.bcab.2018.06.002. Nardi, S., Pizzeghello, D., Muscolo, A., & Vianello, A. (2002). Physiological effects of humic substances on higher plants. Soil Biology and. Biochemistry, 34, 1527 1536. https://doi.org/10.1016/S0038-0717(02)00174-8. Nelson, D. W. & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In: Sparks, D.L. (Ed.), Methods of Soil Analysis, Part 3, Chemical Methods, SSSA and ASA, Madison, WI. PP. 961-1010. https://doi.org/10.2136/sssabookser5.3.c34. Norazian, M. H., Nurul Asyiqin, Y., Amirah Fareeza, Y., Nurul Nasyitah, M. R. & Rashidi, O. (2019). Carotenoids of capsicum fruits: Pigment profile and health-promoting functional attributes. Antioxidants 8(10): 469. https://doi.org/10.3390%2Fantiox8100469. PMID: 31600964; PMCID: PMC6827103. (In persian). Olsen, S.R., Cole, C.V., Watanabe, F. S. & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United.States. Department. of Agricultre. 939p. Palma, J. M., Teran, F., Contreras-Ruiz, A., Rodriguez-Ruiz, M. & Corpas, F. J. (2020). Antioxidant profile of pepper (Capsicum annuum L.) fruits containing diverse levels of capsaicinoids. Antioxidants 9(9), 878. https://doi.org/10.3390/antiox9090878. Paradikovic, N., Vinkovic, T., Vinkovic-Vrcek, I., Zuntar, I., Bojic, M. & Medic-Saric, M. (2011). Effect of natural biostimulants on yield and nutritional quality: An example of sweet yellow pepper (Capsicum annuum L.) plants. Journal of the Science of Food Agriculture, 91(12), 2146-2152. http://dx.doi.org/10.1002/jsfa.4431. https://doi.org/10.1002/jsfa.4431 Pascual, S. D., Ruggiero, C., & Barbieri. G. (2003). Physiological Responses of Pepper to Salinity and Drought. JASHS January 2003 vol. 128 no. 1 48-54. http://dx.doi.org/10.21273/JASHS.128.1.0048 Pourmansour, S., Razzaghi, F., Sepaskhah, A., & Moosavi, A. (2019). Wheat growth and yield investigation under different levels of biochar and deficit irrigation under greenhouse conditions, Journal of and water irrigation, 9(1), 15-28. doi: 10.22059/jwim.2019.278053.665. Safari, Z. S., Ding, P., Juju Nakasha, J. & Yusof, S. F. (2020). Combining chitosan and vanillin to retain postharvest quality of tomato fruit during ambient temperature storage. Coatings, 10(12), 1222. https://doi.org/10.3390/coatings. (In Persian). Safian, M., Motaghian, H., & Hosseinpur, A. (2020). Effects of sugarcane residue biochar and P fertilizer on P availability and its fractions in a calcareous clay loam soil .15 th Iranian Soil Science Congress. Saif El-Deen, U. M., Ezzat A. S., & El-Morsy, A. H. A. (2011). Effect of phosphorus fertilizer rates andsalinity. Asian, Journal of. Crop Science, 1(2), 87-95. Sardans, J., Penuelas, J., & Estiarte, M. (2006). Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland. Plant and Soil. 289, 227-238. doi:10.1007/s11104-006-9131-2. Sarir, M., Durrani, M, I., & Mian, I. A. (2006). Effect of the source and rate of humic acid on phosphorus transformations. Environmental, 1 (1): 29-31. Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 587. Shen, Y., Lin, H., Gao, W., & Li, M. (2020). The effects of humic acid urea and polyaspartic acid urea on reducing nitrogen loss compared with urea. Journal of Science. Food Agriculture, 100, 4425–4432. https://doi.org/10.1002/jsfa.10482. Sheng, G. S., Fang-fang &. Tong, Z. (2014). Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol). Catena, 114: 17-44.doi:10.1016/j.catena.2013.10.014. Tabatabai, M. A. (1982). Soil enzymes. PP. 539-579. IN: A. C. page (Ed.). Methods of soil analysis.Part 2. Am. Soc. Agron., Madison, WI, USA. Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenylphosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1, 301-307. Tejada, M., Garcia, C., Gonzalez, J. L., & Hernandez, M. T. (2006). Use of organic amendment asa strategy for saline soil remediation; influence on the physical, chemical and biological properties of soil. Soil Biology and Biochemistry, 38, 1413-1421. Thomas, G. W. (1996). Soil pH and soil Acidity. In: sparks, D. L. (Ed). Methods of soil analysis. Part 3- Chemical Methods. Soil Science, Madison, WI. No. 5. pp: 475-490. Tisdoll, M & Adem. H.H. (1986). Effect of type of seedbed, type of irrigation, and a mulch on seeding emergence, growth and yield of maize (Zea mays). Ausraliant Journal of Experimental Agriculture, 26, 197-200. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38. p://dx.doi.org/10.1097/00010694-193401000-00003. Wang, F., Tang, Y. A., Zhang, P. C., & Coffie, J. N. (2013). Effects of various organic materialon soil aggregate stabilityand soil microbiological properties on the Loess Plateau of China. Plant Soil Environ, 59.162-168. doi:10.17221/702/2012-PSE. Zhang, Y., Zhu, G., Yin, L., Ma,L., Xu, C., & Chen, H. (2022).Optimal soil water content and temperature sensitivity differ among heterotrophic and autotrophic respiration from oasis agrecosystems. Geoderma, 425,116071. https://doi.org/10.1016/j.Geoderma.2022.116071. Zhen, Z., Liu, H., Wang, N., Guo, L., Meng, J., Ding, N., Wu, G. & Jiang, G. (2014). Effects of manure compost application on soil microbial community diversity and soil micro environments in a temperate cropland in china. Plos one, 9 (10), e108555. https://doi.org/10.1371/.0108555. Zhu, J., Li, M., & Whelan, M. (2018). Phosohorus activators contribute to legacy phosohorus availability in agricultural sois: a review. Science of the total environment, 612, 522-537. https://doi.org/10.1016/j.scitotenv.2017.08.095. | ||
آمار تعداد مشاهده مقاله: 243 تعداد دریافت فایل اصل مقاله: 190 |