تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,032 |
تعداد مشاهده مقاله | 125,502,340 |
تعداد دریافت فایل اصل مقاله | 98,766,459 |
شناسایی ژنهای موثر بر صفات رشد در جوجه های گوشتی با استفاده از روشهای رگرسیون خطی و یادگیری ماشین | ||
علوم دامی ایران | ||
دوره 55، شماره 3، مهر 1403، صفحه 583-602 اصل مقاله (1.76 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijas.2023.363825.653963 | ||
نویسندگان | ||
حسین بانی سعادت1؛ رسول واعظ ترشیزی* 2؛ علی اکبر مسعودی3؛ علیرضا احسانی3؛ صالح شاهین فر4 | ||
1گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران | ||
2گروه علوم دامی دانشکده کشاورزی دانشگاه تربیت مدرس تهران ایران | ||
3گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران. | ||
4تحقیقات کشاورزی ویکتوریا، مرکز آگریبایوساینس، بوندورا، ویکتوریا ۳۰۸۳، استرالیا. | ||
چکیده | ||
آگاهی از ارتباط چندشکلیهای تکنوکلئوتیدی با صفات مهم اقتصادی یکی از ابزارهای مهم برنامههای اصلاح نژاد در صنعت طیور است. مطالعات پویش ژنومی برای کشف چندشکلیهای تکنوکلئوتیدی (نشانگرها) مرتبط با این صفات، اغلب با استفاده از مدلهای خطی ساده صورت میگیرد که به دلیل وجود برخی از فرضیات این مدلها، ممکن است بعضی از نشانگرها شناسایی نشوند. این مطالعه با هدف ارزیابی کارآیی روشهای جنگل تصادفی و گرادیان بوستینگ و ارزیابی عملکرد آنها در مقابل مدل خطی برای شناسایی نشانگرهای همبسته با صفات وزن بدن در سنین 6 و 9 هفتگی در جوجههای گوشتی نسل دوم حاصل از تلاقیهای دوطرفه لاین تجاری آرین با پرندههای بومی ارومیه انجام شد. نتایج نشان داد که دو روش یادگیری ماشین توانستند نشانگرهای مهمی از جمله GGaluGA308573، GGaluGA255033، Gga_rs13614212، Gga_rs13743072، GGaluGA258772، Gga_rs14034395 و Gga_rs13858398 را برای صفات وزن بدن شناسایی کنند که به ترتیب با ژنهای MAP2، ACSL1، CAMSAP2، FAM117B، SLC4A4، TIMP4 و LncRNA در ارتباط بودند. تقسیم سلولی، کنترل رشد، تنظیم ساختار اسکلت سلولی و میکروتوبول، و فعالیت رونویسی مهمترین فرآیند بیولوژیکی این ژنها میباشند. مطالعه ژنهای جدید شناسایی شده توسط روشهای یادگیری ماشین، که مدل خطی قادر به شناسایی آنها در جمعیت مورد مطالعه نبودند، میتواند بینش جدیدی را برای کنترل ژنتیکی صفات رشد در جوجههای گوشتی باز کند. علاوه بر این، نشانگرهای با اهمیت کشف شده، قابلیت استفاده در برنامههای اصلاح ژنتیکی جوجههای گوشتی را دارند. | ||
کلیدواژهها | ||
چندشکلیهای تکنوکلئوتیدی؛ مطالعات پویش ژنومی؛ جوجه های گوشتی؛ یادگیری ماشین | ||
عنوان مقاله [English] | ||
Identification of genes affecting growth traits in broiler chickens using linear regression and machine learning methods | ||
نویسندگان [English] | ||
Hossein Bani Saadat1؛ Rasoul Vaez Torshizi2؛ Ali Akbar Masoudi3؛ Alireza Ehsani3؛ Saleh Shahinfar4 | ||
1Department of Animal Science, Faculty of Agriculture,, Tarbiat Modares University, Tehran, Iran. | ||
2Department of Animal Science, Agricultural Faculty, Tarbiat Modares University, Tehran, Iran | ||
3Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran. | ||
4Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia. | ||
چکیده [English] | ||
Knowledge about the association between single nucleotide polymorphisms (SNPs) and important economic traits is one of the crucial tools in breeding programs within the poultry industry. Genome-wide studies for discovering SNP variations related to these traits are often conducted using simple linear models. However, due to certain assumptions of these models, some SNP markers may not be identified. This study aimed to evaluate the performance of random forest and gradient boosting methods compared to linear models in identifying SNP markers associated with body weight traits at 6 and 9 weeks of age in F2 broiler chickens resulting from crosses between the commercial Arian line and native Urmia birds. The results showed that the machine learning approaches were able to identify important markers, such as GGaluGA308573, GGaluGA255033, Gga_rs13614212, Gga_rs13743072, GGaluGA258772, Gga_rs14034395, and Gga_rs13858398, associated with body weight traits, which were related to genes MAP2, ACSL1, CAMSAP2, FAM117B, SLC4A4, TIMP4, and LncRNA, respectively. These genes are primarily involved in cellular division, growth control, regulation of cellular skeleton structure and microtubules, and transcription activity, constituting the most important biological processes. The identification of these novel genes using machine learning methods, which were not detected by linear models and previous studies in this population, could provide new insights into genetic control of growth traits in broiler chickens. Moreover, the discovered significant markers can be utilized in genetic improvement programs for broiler chickens. | ||
کلیدواژهها [English] | ||
nucleotide polymorphisms, Genome-wide association studies, broiler chickens, machine learning | ||
مراجع | ||
Arabnejad, M., Montgomery, C. G., Gaffney, P. M., McKinney, B. A. (2020). Nearest-neighbor projected distance regression for epistasis detection in GWAS with population structure correction. Frontier Genetics, 11:784. Bahadoran, S., Dehghani Samani, A., & Hassanpour, H. (2018). Effect of heat stress on the gene expression of ion transporters/channels in the uterus of laying hens during eggshell formation. Stress, 21(1), 51-58. Baştanlar, Y., & Özuysal, M. (2014). Introduction to machine learning. Methods in Molecular Biology, 1107: 105-128. Boulesteix, A. L., Janitza, S., ruppa, J. K., & König I. R. (2012). Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Technical Report. Department of Statistics, University of Munich. Breiman, L. (2001). Random forests. Machine. Learning, 45, 5-32. Brew, K., Dinakarpandian, D., & Nagase, H. (2000). Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1477(1-2), 267-283. Cha, J., Choo, H., Srikanth, K., Lee, S. H., Son, J. W., Park, M. R., Kim, N., Jang, G. W., & Park, J. E. (2021). Genome-wide association study identifies 12 loci associated with body weight at age 8 weeks in Korean native chickens. Genes, 12(8), 1170. Cremonesi, P., Capoferri, R., Pisoni, G., Del Corvo, M., Strozzi, F., Rupp, R., Caillat, H., Modesto, P., Moroni, P., Williams, J. L., & Castiglioni, B. (2012). Response of the goat mammary gland to infection with Staphylococcus aureus revealed by gene expression profiling in milk somatic and white blood cells. BMC Genomics, 13(1), 1-17. Dadousis, C., Somavilla, A., Ilska, J. J., Johnsson, M., Batista, L., Mellanby, R. J., Headon, D., Gottardo, P., Whalen, A., Wilson, D., & Dunn, I. C. (2021). A genome-wide association analysis for body weight at 35 days measured on 137,343 broiler chickens. Genetics Selection Evolution, 53, 1-14. Dzomba, E. F., Chimonyo, M., Snyman, M. A., & Muchadeyi, F. C. (2020). The genomic architecture of South African mutton, pelt, dual‐purpose and nondescript sheep breeds relative to global sheep populations. Animal Genetics, 51 (6), 910-923. Emrani, H., Vaez Torshizi, R., Masoudi, A. A., & Ehsani, A. (2017). Identification of new loci for body weight traits in F2 chicken population using genome-wide association study. Livestock Science, 206, 125–131. Enoma, D. O., Bishung, J., Abiodun, T., Ogunlana, O., & Osamor, V. C. (2022). Machine learning approaches to genome-wide association studies. Journal of King Saud University-Science, 34(4), 101847. Fehm, L., Kern, W., & Peters, A. (2004). Body weight regulation through the central nervous system. The development of a pathogenetically based adiposity therapy. Medizinische Klinik, 99 (11), 674-679. Friedman, J. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38, Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29 (5), 1189-1232. Goddard M. E., & Hayes, B. J. (2009) Mapping genes for complex traits in domestic Goldstein, B. A., Hubbard, A. E., Cutler A., & Barcellos L. F. (2010). An application of random forests to a genome-wide association dataset: Methodological considerations and new findings. BMC Genetics, 11, 49. Harada, A., Teng, J., Takei, Y., Oguchi, K., & Hirokawa, N. (2002). MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction. The Journal of Cell Biology, 158 (3), 541-549. Hayes B. (2013). Overview of Statistical Methods for Genome-Wide Association Studies (GWAS). Methods in Molecular Biology, 1019, 149-69. Hong E. P. & Park J. W. (2012). Sample size and statistical power calculation in genetic association studies. Genomics Inform, 10(2), 117-22. Hrabia, A., Miska, K. B., Schreier, L. L., Proszkowiec-Weglarz, M. (2022) Altered gene expression of selected matrix metalloproteinase system proteins in the broiler chicken gastrointestinal tract during post-hatch development and coccidia infection. Poultry Science, 101(8):101915. Hu, T., Darabos, C., & Urbanowicz, R. (2020). Machine learning in genome-wide association studies. Frontiers in Genetics, 11, 593958. Jin, C. F., Chen, Y. J., Yang, Z. Q., Shi, K., & Chen, C. K. (2015). A genome-wide association study of growth trait-related single nucleotide polymorphisms in Chinese Yancheng chickens. Genetics and Molecular Research, 14 (4), 15783-15792. Kanakachari, M., Ashwini, R., Chatterjee, R. N., & Bhattacharya, T. K. (2021). Transcriptome analysis reveals potential mechanisms and pathways underlying embryonic development with respect to muscle growth and egg production in slow and fast growing chickens. BMC Genomics, 13 (1), 58. Li, B., Zhang, N., Wang, Y. G., George, A. W., Reverter, A., & Li, Y. (2018). Genomic prediction of breeding values using a subset of SNPs identified by three machine learning methods. Frontiers in Genetics, 9, 237. Liaw, A., & Wiener, M. (2015). randomForest: Breiman and Cutler’s random forests for classification and regression. R package version, 4, 14. Liu, L., Cui, H., Xing, S., Zhao, G., & Wen, J. (2019). Effect of divergent selection for intramuscular fat content on muscle lipid metabolism in chickens. Animals, 10(1), 4. Lyu, S., Yang, P., Liu, Y., Song, T., Zhang, Z., Shi, Q., Chen, F., Liu, X., Li, Z., Ru, B., & Cai, C. (2021). Genetic effects of MOGAT1 gene SNP in growth traits of Chinese cattle. Gene, 769, 145201. Mebratie, W., Madsen, P., Hawken, R. Rome, H., Marois, D., Henshall, J., Bovenhuis, H., & Jensen J. (2019). Genetic parameters for body weight and different definitions of residual feed intake in broiler chickens. Genetics Selection Evolution, 51, 53. Nicodemus, K. K., Malley, J. D., Strobl, C., & Ziegler, A. (2010). The behaviour of random forest permutation-based variable importance measures under predictor correlation. BMC Bioinformatics. 11,110. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., De Bakker, P. I., Daly, M. J., & Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81 (3), 559-575. Ren, T., Li, Z., Zhou, Y., Liu, X., Han, R., Wang, Y., Yan, F., Sun, G., Li, H., & Kang, X. (2018). Sequencing and characterization of lncRNAs in the breast muscle of Gushi and Arbor Acres chickens. Genome, 61(5), 337-347. Resnyk, C. W., Carré, W., Wang, X., Porter, T. E., Simon, J., Le Bihan-Duval, E., Duclos, M. J., Aggrey, S. E., & Cogburn, L.A. (2017). Transcriptional analysis of abdominal fat in chickens divergently selected on bodyweight at two ages reveals novel mechanisms controlling adiposity: validating visceral adipose tissue as a dynamic endocrine and metabolic organ. BMC Genomics, 18, 1-31. Ridgeway, G. (2013). Package’GBM’: Generalized Boosted Regression Models. R Package version, 2. Srikanth, K., Lee, S. H., Chung, K. Y., Park, J. E., Jang, G. W., Park, M. R., Kim, N. Y., Kim, T. H., Chai, H. H., Sun, J., Zhang, C., Lan, X., Lei, C., & Chen, H. (2012). Exploring polymorphisms and associations of the bovine MOGAT3 gene with growth traits. Genome, 55(1), 56-62. Sun, S., Dong, B., & Zou, Q. (2021). Revisiting genome-wide association studies from statistical modelling to machine learning. Briefings in Bioinformatics, 22(4), 263. Teuliere, J., Cordes, S., Singhvi, A., Talavera, K., & Garriga, G. (2014). Asymmetric neuroblast divisions producing apoptotic cells require the cytohesin GRP-1 in Caenorhabditis Elegans. Genetics, 198(1), 229-247. Tian, W., Wang, D., Wang, Z., Jiang, K., Li, Z., Tian, Y., Kang, X., Liu, X., & Li, H. (2021). Evolution, expression profile, and regulatory characteristics of ACSL gene family in chicken (Gallus Gallus). Gene, 764, 145094. Wang, J., Yuan, X., Ye, S., Huang, S., He, Y., Zhang, H., Li, J., Zhang, X., & Zhang, Z. (2019). Genome wide association study on feed conversion ratio using imputed sequence data in chickens. Asian-Australasian Journal of Animal Sciences, 32 (4), 494-500. Willer, C. J., Schmidt, E. M., Sengupta, S., Peloso, G. M., Gustafsson, S., Kanoni, S., Ganna, A., Chen, J., Buchkovich, M.L., Mora, S., & Beckmann, J.S. (2013). Discovery and refinement of loci associated with lipid levels. Nature Genetics, 45 (11), 1274-1283. Wray, N. R., Yang, J., Hayes, B. J., Price, A. L., Goddard, M. E., & Visscher, P. M. (2013). Pitfalls of predicting complex traits from SNPs. Nature Reviews Genetics, 14 (7), 507–515. Yates, A., Akanni, W., Amode, M. R., Barrell, D., Billis, K., Carvalho-Silva, D., Cummins, C., Clapham, P., Fitzgerald, S., Gil, L., & Girón, C. G. (2016). Ensembl 2016. Nucleic Acids Research, 44, 710-716. Yue, Q., Chen, Y., Chen, H., & Zhou, R. (2022). Transcriptome profile reveals novel candidate genes associated with bone strength in end-of-lay hens. Animal Biotechnology, 1-9. Zhang, G. X., Fan, Q. C., Zhang, T., Wang, J. Y., Wang, W. H., Xue, Q., & Wang, Y. J. (2015). Genome-wide association study of growth traits in the Jinghai Yellow chicken. Genetics and Molecular Research, 14(4), 15331-15338. | ||
آمار تعداد مشاهده مقاله: 422 تعداد دریافت فایل اصل مقاله: 320 |