تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,117,779 |
تعداد دریافت فایل اصل مقاله | 97,223,516 |
مقایسه مشخصات فیزیکوشیمیایی عرق نعناع فلفلی (Mentha piperita L.) حاصل از گیاه خشک و تازه در دو مرحله رویشی و زایشی و در نسبتهای مختلف حجم عرق به وزن گیاه | ||
علوم باغبانی ایران | ||
دوره 55، شماره 2، تیر 1403، صفحه 331-347 اصل مقاله (1.5 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2024.371551.2151 | ||
نویسندگان | ||
ریحانه طائب نیا1؛ فاطمه سفیدکن* 2؛ علی محمدی ترکاشوند1؛ علی اشرف جعفری3؛ سپیده کلاته جاری1 | ||
1گروه علوم باغبانی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران | ||
2بخش تحقیقات گیاهان دارویی، موسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران | ||
3بخش تحقیقات مرتع، موسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران | ||
چکیده | ||
در این مطالعه، تاًثیر مرحله برداشت (رویشی و زایشی) و نسبت های مختلف حجم عرق به یک کیلوگرم گیاه تازه (1:2، 1:4، 1:6 و 1:8 لیتر) بر خصوصیات فیزیکوشیمیایی و اسانس موجود در عرق نعناع فلفلی (Mentha piperita L.) بررسی شد. همچنین، از نعناع فلفلی خشک شده (سایه کامل، آفتاب+سایه، و آفتاب) نیز عرق تهیه شده و با خصوصیات فیزیکوشیمیایی گیاه تازه مقایسه شد. از روشهای استاندارد برای تعیین خصوصیات فیزیکوشیمیایی عرقیات و استخراج و اندازهگیری اسانس موجود در عرق استفاده شد و ترکیبات اسانس نیز توسط دستگاههای GC و GC/MS ارزیابی شدند. نتایج آنالیز واریانس نشان دادند که مرحله برداشت و نسبت عرق به گیاه بر عدد استری، عدد اکسایش، عدد یدی، و مقادیر اسانس عرق تاٴثیر معنیداری دارند. بیشترین مقدار عدد استری (02/0 ± 8/10) و عدد اکسایش (46/70 ± 33/165) در نمونههای قبل از گلدهی و برداشت با نسبت چهار به یک (بهترتیب نسبت حجمی آب به گیاه) مشاهده شد. مقدار اسانس در نمونههای گلدار (90/5 ± 83/37) بیشتر از نمونههای قبل از گلدهی (73/8 ± 25/28) بود و حجمهای برداشتی دو به یک (56/3 ± 50/35) و چهار به یک (53/5 ± 33/40) نیز مقادیر بالاتری اسانس داشتند. روشهای خشک کردن نیز بر خصوصیات فیزیکوشیمیایی عرق اثر داشت. منتول (9/33 – 6/40 درصد) و منتون (3/11 – 9/34 درصد) بیشترین مقدار ترکیبات موجود در عرق نعناع را در تمامی تیمارها به خود اختصاص دادند. طبق این نتایج، عرق نعناع فلفلی در مرحله گلدهی کامل، در نسبت برداشت عرق به گیاه دو و چهار لیتر به یک کیلو گیاه، و خشک کردن در شرایط آفتاب+سایه از کیفیت بالاتری برخوردار است. | ||
کلیدواژهها | ||
عرقگیری؛ عرقیات گیاهی؛ اسانس؛ کیفیت استاندارد | ||
عنوان مقاله [English] | ||
Comparison of physicochemical properties of peppermint (Mentha piperita L.) distillate obtained from dry and fresh plant in vegetative and flowering stages and in different distillate to water ratios | ||
نویسندگان [English] | ||
Reyhaneh Taebnia1؛ Fatemeh Sefidkon2؛ Ali Mohammadi Torkashvand1؛ Ali Ashraf Jafari3؛ Sepideh Kalate Jari1 | ||
1Department of Horticultural Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran. | ||
2Department of Medicinal Plants, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran | ||
34. Department of Rangelands, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran | ||
چکیده [English] | ||
This study investigated the effects of harvesting time including vegetative and flowering stages and four different ratio of volumes of distillate to 1 kg of fresh plant (2, 4, 6, and 8 L per 1 kg fresh plant) on physiochemical characters and essential oils of the peppermint (Mentha piperita L.) distillate. In addition, comparisons were made between distillate resulted from dried (drying in shade, sunlight+shade, and sunlight) and fresh peppermint samples. Distillation was performed using the water distillation method. Standard protocols were used to investigate the physiochemical properties of distillate. Analyses of the essential oils were done using Gas Chromatography (GC) and GC-Mass Spectrometry (GC/MS). Two-way analyses of variances showed significant effects of the harvest time and distillate volume on ester number, oxidation number, iodine number, and essential oils quantity of the distillate. The highest amount of ester no. (10.8 ± 0.02) and oxidation no. (165.33 ± 70.46) was quantified in the vegetative stage and 1:4 L of distillate. Total amount of essential oils in the flowering (37.83% ± 5.9) were higher than the vegetative (28.25 ± 8.73) stages. In addition, distillates volumes of 2:1 (35.50 ± 3.56%) and 4:1 (40.33 ± 5.53%) had higher essential oils than the other distillate volumes. Drying methods had significant effects on all physicochemical properties of distillates. Menthol (33.9-40.6 %) and menthone (11.3-34.9 %) were the highest components of the oils within the distillates. The results indicated that the peppermint distillate may have higher quality when the plants harvested at flowering stage, dried at sunlight+shade, and distillate taken at 2 and/or 4 L to 1 kg plant. | ||
کلیدواژهها [English] | ||
distillation, plant distillate, essential oils, standard quality | ||
مراجع | ||
Akhoondi, R., Mirjalili, M. H., & Hadian, J. (2015). Quantitative and qualitative variations in the essential oil of Rosa foetida Herrm. (Rosaceae) flowers as affected by different drying methods. Journal of Essential Oil Research, 27, 421-427. Arab Ameri, S., Samadi, F., Dastar, B., & Zerehdaran, S. (2016). Effect of peppermint (Mentha piperita) powder on immune response of broiler chickens in heat stress. Iranian Journal of Applied Animal Science, 6, 435-445. Arakawa, T., & Osawa, K. (2000). Pharmacological study and application to food of mint flavour-antibacterial and antiallergic principles. Aroma Research, 1, 20-23. Babaeian, M., Naseri, M., Kamalinejad, M., Ghaffari, F., Emadi, F., Feizi, A., Rafiei, R., Mazaheri, M., Hasheminejad, S. A., & Park, J. W. (2017). The efficacy of mentha longifolia in the treatment of patients with postprandial distress syndrome: A double-blind, randomized clinical trial. Iranian Red Crescent Medical Journal, 19(2), e34538. Barros, A. S, Morais, S. M., Ferreira, P. A. T., Vieira, Í. G. P., Craveiro, A. A., Fontenelle, R. O. S, Menezes, J. E. S. A., Silva, F. W. F., & Sousa, H. A. (2015). Chemical composition and functional properties of essential oils from Mentha species. Industrial Crops and Products, 76, 557-564. Bartley, J. P., & Jacobs, A. L. (2000). Effects of drying on flavour compounds in Australian‐grown ginger (Zingiber officinale). Journal of the Science of Food and Agriculture, 80, 209-215. Berktas, S. & Cam, M., 2021. Peppermint leaves hydrodistillation by-products: bioactive properties and incorporation into ice cream formulations. Journal of Food Science and Technology,. 58(11), 4282–4293. Ćavar Zeljković, S., Šišková, J., Komzáková, K., De Diego, N., Kaffková, K., & Tarkowski, P. (2021). Phenolic compounds and biological activity of selected Mentha species. Plants, 10(3), 550. Chen, J., & Wang, H. (2021). Density, viscosity, and saturated vapour pressure of 3-chloro-4-fluoronitrobenzene and 3-chloro-2-fluoronitrobenzene. The Journal of Chemical Thermodynamics, 154, 106337. Choi, O., Cho, S. K., Kim, J., Park, C. G., & Kim, J. (2016). Antibacterial properties and major bioactive components of Mentha piperita essential oils against bacterial fruit blotch of watermelon. Archives of Phytopathology and Plant Protection, 49, 325-334. Dmytryshyn, S., Dalai, A., Chaudhari, S., Mishra, H., & Reaney, M. (2004). Synthesis and characterization of vegetable oil derived esters: evaluation for their diesel additive properties. Bioresource Technology, 92, 55-64. Gavahian, M., Farahnaky, A., Farhoosh, R., Javidnia, K., & Shahidi, F. (2015). Extraction of essential oils from Mentha piperita using advanced techniques: Microwave versus ohmic assisted hydrodistillation. Food and Bioproducts Processing, 94, 50-58. Giatropoulos, A., Kimbaris, A., Michaelakis, Α., Papachristos, D. P., Polissiou, M. G., & Emmanouel, N. (2018). Chemical composition and assessment of larvicidal and repellent capacity of 14 Lamiaceae essential oils against Aedes albopictus. Parasitology research, 117, 1953-1964. Grigoleit, H. G., & Grigoleit, P. (2005). Peppermint oil in irritable bowel syndrome. Phytomedicine, 12(8), 601-606. Heravi, M. J., & Sereshti, H. (2007). Determination of essential oil components of Artemisia haussknechtii Boiss. using simultaneous hydrodistillation-static headspace liquid phase microextraction-gas chromatography mass spectrometry. Journal of Chromatography A, 1160, 81-89. Kamatou, G. P., Vermaak, I., Viljoen, A. M., & Lawrence, B. M. (2013). Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry, 96, 15-25. Kaya, C., Hamamci, C., Baysal, A., Akba, O., Erdogan, S., & Saydut, A. (2009). Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production. Renewable Energy, 34(5), 1257-1260. Kedia, A., Prakash, B., Mishra, P. K., Chanotiya, C., & Dubey, N. K. (2014). Antifungal, antiaflatoxigenic, and insecticidal efficacy of spearmint (Mentha spicata L.) essential oil. International Biodeterioration & Biodegradation, 89, 29-36. Keifer, D., Ulbricht, C., Abrams, T. R., Basch, E., Giese, N., Giles, M., Kirkwood, C. D., Miranda, M., & Woods, J. (2008). Peppermint (Mentha Xpiperita): An evidence-based systematic review by the natural standard research collaboration. Journal of Herbal Pharmacotherapy, 7, 91-143. Kumar, R., Sharma, S., Sharma, S., Sharma, M., & Kumar, N. (2018). Influence of flower to water ratio and distillation time of damask rose (Rosa damascena Mill.) flowers on essential oil content and composition in the western Himalayas. Journal of Essential Oil Research, 30, 353-359. Liang, J., Zhang, Y., Chi, P., Liu, H., Jing, Z., Cao, H., Du, Y., Zhao, Y., Qin, X., & Zhang, W. (2023). Essential oils: Chemical constituents, potential neuropharmacological effects and aromatherapy-A review. Pharmacological Research-Modern Chinese Medicine, 6(2), 100210. Loolaie, M., Moasefi, N., Rasouli, H., & Adibi, H. (2017). Peppermint and its functionality: A review. Archives of Clinical Microbiology, 8(4), 54. Lucchesi, M. E., Chemat, F., & Smadja, J. (2004). Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation. Journal of Chromatography A, 1043(2), 323-327. Marques, S. P. P. M., Pinheiro, R. O., Nascimento, R. A., Andrade, E. H. A., & Faria, L. J. G. (2023). Effects of harvest time and hydrodistillation time on yield, composition, and antioxidant activity of mint essential oil. Molecules 28(22), 7583. McKay, D. L., & Blumberg, J. B. (2006). A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytotherapy Research, 20(7), 519-530. Mokhtarikhah, G., Ebadi, M. T., & Ayyari, M. (2020). Qualitative changes of spearmint essential oil as affected by drying methods. Industrial crops and products, 153, 112492. Narasimhamoorthy, B., Zhao, L. Q., Liu, X., Yang, W., & Greaves, J. A. (2015). Differences in the chemotype of two native spearmint clonal lines selected for rosmarinic acid accumulation in comparison to commercially grown native spearmint. Industrial Crops and Products, 63, 87-91. Öktemer, T., Ipçi, K., Muluk, N. B., & Cingi, C. (2015). A pastille combining myrrh tincture, peppermint oil and menthol to treat the upper airway. ENT Updates, 5, 128-131. Park, K. J., Vohnikova, Z., & Brod, F. P. R. (2002). Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.). Journal of Food Engineering, 51, 193-199. Peat, J., Frazee, C., Kearns, G., & Garg, U. (2016). Determination of menthol in plasma and urine by gas chromatography/mass spectrometry (GC/MS). In U. Garg (Ed.), Clinical applications of mass spectrometry in drug analysis: methods and protocols (pp. 205-211). Springer. Rguez, S., Msaada, K., Daami-Remadi, M., Chayeb, I., Bettaieb Rebey, I., Hammami, M., Laarif, A., & Hamrouni-Sellami, I. (2019). Chemical composition and biological activities of essential oils of Salvia officinalis aerial parts as affected by diurnal variations. Plant Biosystems, 153(2), 264-272. Riachi, L. G., & De Maria, C. A. B. (2015). Peppermint antioxidants revisited. Food chemistry, 176, 7281. Rohloff, J., Dragland, S., Mordal, R., & Iversen, T. H. (2005). Effect of harvest time and drying method on biomass production, essential oil yield, and quality of peppermint (Mentha piperita L.). Journal of Agricultural and Food Chemistry, 53, 4148-4143. Sefidkon, F., Abbasi, K., & Khaniki, G. B. (2006). Influence of drying and extraction methods on yield and chemical composition of the essential oil of Satureja hortensis. Food Chemistry, 99(1), 19-23. Sellami, I. H., Wannes, W. A., Bettaieb, I., Berrima, S., Chahed, T., Marzouk, B., & Limam, F. (2011). Qualitative and quantitative changes in the essential oil of Laurus nobilis L. leaves as affected by different drying methods. Food Chemistry, 126, 691-697. Szterk, A., Roszko, M., Sosińska, E., Derewiaka, D., & Lewicki, P. (2010). Chemical composition and oxidative stability of selected plant oils. Journal of the American Oil Chemists' Society, 87, 637-645. Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 762. Zhang, L. L., Chen, Y., Li, Z. J., Li, X., & Fan, G. (2022). Bioactive properties of the aromatic molecules of spearmint (Mentha spicata L.) essential oil: A review. Food & Function, 13, 3110-3132. Zhao, Q., Li, M., Li, M., Jin, L., & Wei, J. (2023). Changes in growth characteristics and secondary metabolites in Sinopodophyllum hexandrum with increasing age. Industrial Crops and Products, 196, 116509. Zheljazkov, V. D., & Astatkie, T. (2012). Distillation waste water can modify peppermint (Mentha ×piperita L.) oil composition. Industrial Crops and Products, 36(1), 420-426. | ||
آمار تعداد مشاهده مقاله: 114 تعداد دریافت فایل اصل مقاله: 51 |