تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,509,165 |
تعداد دریافت فایل اصل مقاله | 98,772,384 |
بررسی همگنی دادههای دما و بارش با استفاده از رویکردهای آماری و آماری-اقلیمی | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 1، فروردین 1403، صفحه 1-15 اصل مقاله (2.19 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.365950.669584 | ||
نویسندگان | ||
مجید چراغعلیزاده1؛ علی خلیلی1؛ سمیه حجابی2؛ جواد بذرافشان* 1 | ||
1گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران | ||
2دانشگاه ارومیه، دانشکده کشاورزی، گروه مهندسی آب | ||
چکیده | ||
اولین گام در مطالعات مرتبط با پدیدههای هواشناسی و آبشناسی بررسی کیفیت دادههای مورد مطالعه است. به دلیل در دسترس نبودن فراداده بلندمدت و پیش-آگاهی نسبت به کیفیت دادههای مورد مطالعه، نتایج حاصل از تحلیل دادهها در کاربردهای مختلف قابل اعتماد نخواهد بود. از اینرو، این پژوهش با هدف بررسی همگنی دو متغیر مهم جوی شامل دما (متوسط، کمینه و بیشینه) و بارش در دوره آماری 1990 تا 2019 با دو رویکرد آماری و آماری-اقلیمی برای 70 ایستگاه همدید در ایران به انجام رسید. نتایج این پژوهش مبتنی بر رویکردهای مطلق آماری نشان داد که بیشترین سالهای شکست متغیرهای دما (بارش) در نیمه دوم دهه 1990 میلادی با تمرکز بر سال 1997 (1999، 2006) است. به طور کلی بیشتر (کمتر) از 90 درصد از سالهای شکست متغیر دما (بارش) معنیدار میباشند که این امر محدودیتهای جدی را در استفاده از دادهها به وجود میآورد. از سوی دیگر، با دانش به اینکه سیگنالهای اقلیمی محدوده وسیعی را تحت تاثیر قرار میدهند میتوان سالهای شکست مشابه در یک منطقه را به عوامل اقلیمی فارغ از علت آن نسبت داد و ناهمگنی را همگن مشروط و عامل ناهمگنی را یک هنجار اقلیمی در نظر گرفت. نتایج این مطالعه نشان داد که با بررسی همگنی دادهها با رویکرد آماری-اقلیمی مبتنی بر مفهوم ایستگاه مجاور (نزدیکترین ایستگاه یا ایستگاهها به ایستگاه هدف) میتوان 75 (100) درصد ایستگاههای ناهمگن متغیر دما (بارش) را همگن مشروط فرض کرد و محدودیت استفاده از دادهها را به حداقل رساند. با این حال توصیه میشود که در استفاده از رویکرد آماری-اقلیمی در تحلیل همگنی دادههای اقلیمی دقت بیشتری صورت گیرد. | ||
کلیدواژهها | ||
ایستگاه مجاور؛ ایران؛ آماری-اقلیمی؛ سیگنال اقلیمی؛ همگنی | ||
عنوان مقاله [English] | ||
Investigating the homogeneity of temperature and precipitation data using statistical and statistical-climatic approaches | ||
نویسندگان [English] | ||
Majid Cheraghalizadeh1؛ Ali Khalili1؛ Somayeh Hejabi2؛ Javad Bazrafshan1 | ||
1Department of Irrigation and Reclamation Engineering, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
2Department of Water Engineering, Faculty of Agriculture, Urmia University | ||
چکیده [English] | ||
In meteorological and hydrological studies, the initial and crucial step is to assess the quality of the data under investigation. In cases where long-term metadata and prior knowledge regarding data quality are lacking, the reliability of data analysis results becomes questionable across various applications. Therefore, this research aims to conduct a comparative analysis and investigation of the homogeneity of two significant atmospheric variables: temperature (including average, minimum, and maximum) and precipitation. This assessment is carried out using both statistical and statistical-climatic approaches, covering the period from 1990 to 2019 and involving data from 70 synoptic stations in Iran. The findings obtained through absolute statistical approaches revealed that the majority of breaking years for temperature and precipitation variables occurred during the latter half of the 1990s, with a particular emphasis on the year 1997 for temperature and 2006 for precipitation (and 1999 for precipitation, respectively). In general, it was observed that more than 90% of the breaking years for temperature and precipitation variables exhibited heterogeneity, significantly limiting the utility of the data in various applications. However, it is worth noting that understanding the influence of climatic signals on a wide geographical area allows for the attribution of similar breaking years in a region to climatic factors, regardless of their specific causes. This perspective allows for the consideration of heterogeneity as conditional homogeneity, with the heterogeneity factor being seen as part of the climatic norm. The results from this study demonstrate that by employing a statistical-climatic approach based on the concept of adjacent stations (nearest neighbors) to check data homogeneity, it is possible to consider 75% (100%) of the heterogeneous temperature (precipitation) variables as conditionally homogeneous. This approach helps alleviate the limitations associated with using heterogeneous data. Nevertheless, it is advisable to conduct further thorough investigations into the statistical-climatic approach to ensure its robustness and reliability. | ||
کلیدواژهها [English] | ||
Adjacent station, Iran, statistical-climate, climate signal, homogeneity | ||
مراجع | ||
Aguilar, E., Auer, I., Brunet, M., Peterson, T. C., & Wieringa, J. (2003). Guidelines on climate metadata and homogenization. World Meteorol. Organ, 1186, 1–52. Ahmed, K., Shahid, S., Ismail, T., Nawaz, N., & Wang, X.-J. (2018). Absolute homogeneity assessment of precipitation time series in an arid region of Pakistan. Atmósfera, 31(3), 301–316. Alexandersson, H. (1986). A homogeneity test applied to precipitation data. Journal of Climatology, 6(6), 661–675. Alipoor, H., & Malekian, A. (2019). Aassessment of homogeneity and trend of precipitation thresholds based on nonparametric approaches in north-west Iran. Watershed Engineering and Management, 11(4), 917-928. doi: 10.22092/ijwmse.2018.109070.1256 .(In Persian). Azizi Jalilian, M., Shayesteh, K., Danehkar, A., & Salmanmahiny, A. (2020). A new ecosystem-based land classification of Iran for conservation goals. Environmental Monitoring and Assessment, 192(3). https://doi.org/10.1007/s10661-020-8145-1 Baharvandi, K., Khorshiddoust, A. M., & Nassaji Zavareh, M. (2021). The Clarification of Climactic Fluctuations through SNHT Method (Case Study: Khorramabad Station). Geography and Planning, 25(75), 51-63. doi: 10.22034/gp.2021.10829 .(In Persian). Bazgeer, S., Abbasi, F., Asaadi Oskouei, E., Haghighat, M., Rezazadeh, P. (2019). Assessing the Homogeneity of Temperature and Precipitation Data in Iran with Climatic Approach, Journal of Spatial Analysis Environmental Hazarts, 6(1), 51-70.(In Persian). Bazrafshan, J., & Cheraghalizadeh, M. (2021). Verification of abrupt and gradual shifts in Iranian precipitation and temperature data with statistical methods and stations metadata. Environmental Monitoring and Assessment, 193(3), 1–19. Buishand, T. A. (1982). Some methods for testing the homogeneity of rainfall records. Journal of Hydrology, 58(1–2), 11–27. Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M. J., & Wu, L. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4(2), 111–116. Conrad, V., & Pollak, L. W. (1950). Methods in Climatology. Harvard University Press. https://doi.org/doi:10.4159/harvard.9780674187856 Elzeiny, R., Khadr, M., Zahran, S., & Rashwan, E. (2019). Homogeneity analysis of rainfall series in the upper blue nile river basin, Ethiopia. Journal of Engineering Research, 3(September), 46–53. Ghasemi, A. R. (2015). Changes and trends in maximum, minimum and mean temperature series in Iran. Atmospheric Science Letters, 16(3), 366–372 Hänsel, S., Medeiros, D. M., Matschullat, J., Petta, R. A., & de Mendonça Silva, I. (2016). Assessing Homogeneity and Climate Variability of Temperature and Precipitation Series in the Capitals of North-Eastern Brazil. Frontiers in Earth Science, 4. https://www.frontiersin.org/article/10.3389/feart.2016.00029 Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9781107415324 Khalil, A. (2021). Inhomogeneity detection in the rainfall series for the Mae Klong River Basin, Thailand. Applied Water Science, 11(9), 147. https://doi.org/10.1007/s13201-021-01474-6 Kolendowicz, L., Czernecki, B., Półrolniczak, M., Taszarek, M., Tomczyk, A. M., & Szyga-Pluga, K. (2019). Homogenization of air temperature and its long-term trends in Poznań (Poland) for the period 1848–2016. Theoretical and Applied Climatology, 136(3), 1357–1370. https://doi.org/10.1007/s00704-018-2560-z Mahjoobi, E., Bakhshesh Robat, S., & Hosseinpour, M. (2021). A Review of Studies on the Effect of Teleconnections on Precipitation in Iran from 2004 to 2018. Nivar, 45(112–113), 28–43. https://doi.org/10.30467/nivar.2021.246857.1167. (In Persian) McPhaden, M. J. (1999). The child prodigy of 1997-98. Nature, 398(6728), 559–561. Paek, H., Yu, J., & Qian, C. (2017). Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophysical Research Letters, 44(4), 1848–1856. Mortezapour, S., Asaadi Oskouei, E., & Abbasi, F. (2020). Evaluation of some Homogeneity Tests on mutation detection in climatic data, case study: Rash station. NIVAR, 44(108-109 ), 12-31 .(In Persian). Pettitt, A. N. (1979). A non‐parametric approach to the change‐point problem. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(2), 126–135. Rafati, S., & Karimi, M. (2018). Assessment of homogenization of climate data and trend of temperature. Journal of the Earth and Space Physics, 44(1), 199–214. https://doi.org/10.22059/jesphys.2017.61674 Reid, P. C., Hari, R. E., Beaugrand, G., Livingstone, D. M., Marty, C., Straile, D., Barichivich, J., Goberville, E., Adrian, R., & Aono, Y. (2016). Global impacts of the 1980s regime shift. Global Change Biology, 22(2), 682–703. Ribeiro, S., Caineta, J., & Costa, A. C. (2016). Review and discussion of homogenisation methods for climate data. Physics and Chemistry of the Earth, Parts A/B/C, 94, 167–179. Salehi, S., Dehghani, M., Mortazavi, S. M., & Singh, V. P. (2020). Trend analysis and change point detection of seasonal and annual precipitation in Iran. International Journal of Climatology, 40(1), 308–323. https://doi.org/https://doi.org/10.1002/joc.6211 Suhaila, J., & Yusop, Z. (2018). Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia. Meteorology and Atmospheric Physics, 130(5), 565–581. https://doi.org/10.1007/s00703-017-0537-6 Wijngaard, J. B., Klein Tank, A. M. G., & Können, G. P. (2003). Homogeneity of 20th century European daily temperature and precipitation series. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(6), 679–692. Worsley, K. J. (1979). On the likelihood ratio test for a shift in location of normal populations. Journal of the American Statistical Association, 74(366a), 365–367. | ||
آمار تعداد مشاهده مقاله: 243 تعداد دریافت فایل اصل مقاله: 243 |