تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,115,587 |
تعداد دریافت فایل اصل مقاله | 97,219,789 |
تشخیص کمبود آهن در هلو با استفاده از پردازش تصویر و مدل شبکه عصبی مصنوعی | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 1، فروردین 1403، صفحه 69-81 اصل مقاله (1.71 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.367213.669597 | ||
نویسندگان | ||
نسیم حاجی زاده1؛ ابراهیم سپهر* 1؛ رامین ملکی2؛ آیدین ایمانی1 | ||
1گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
2گروه پژوهشی شیمی تجزیه، جهاد دانشگاهی آذربایجان غربی، ارومیه، ایران | ||
چکیده | ||
پایش سریع و دقیق شرایط تغذیهای باغهای میوه برای توصیه بهینه کودی یک بخش حیاتی در بهبود عملکرد و افزایش کیفیت محصولات کشاورزی است. روشهای آزمایشگاهی فعلی مورد استفاده برای وضعیت تغذیه درختان میوه گران، دشوار، زمانبر و نیازمند فرد متخصص هستند. این تحقیق به منظور تعیین میزان کمبود آهن در درختان هلو، روش پردازش تصویر و مدل شبکه عصبی استفاده شد. یک پایگاه داده شامل 800 تصویر از نمونههای برگ هلو در ابتدا تهیه و تصاویر با استفاده از روش خوشهبندی KNN در چهار کلاس بدون کمبود، کمبود کم، کمبود متوسط و کمبود شدید طبقهبندی شدند. عملیات پیشپردازش، استخراج ویژگیها و مدلسازی با استفاده از شبکه عصبی در نرمافزار متلب نسخه 2017 انجام گرفت. ویژگیهای میانگین و انحراف معیار از مولفههای فضاهای رنگی RGB، HSV و Lab هر تصویر استخراج شدند و سپس الگوریتم آنالیز مولفه اصلی (PCA) بر روی بردار ویژگی اعمال شد. برای تعیین ساختار بهینه شبکه معیارهای دقت، صحت، بازیابی و معیار F برای تعیین تعداد ورودیهای بهینه و تعداد نورونهای متناظر با هر ترکیب ویژگیهای ورودی (PCها) استفاده شد. نتایج نشان داد که مدل شبکه عصبی با ساختار 4 – 36 – 6 قادر است با دقت (54/0 ± 73/89 %)، صحت (57/0 ± 59/89 %)، بازیابی (51/0 ± 52/89 %) و معیار F (54/0 ± 55/89 %) میزان سطح کمبود آهن در برگ درخت هلو را تشخیص دهد. نتایج بدست آمده از ماتریس اغتشاش و مدل توسعه داده شده نشان داد که این روش قادر است با کارایی بالا شدت کمبود آهن در برگ درختان هلو را تشخیص دهد. | ||
کلیدواژهها | ||
هلو؛ کمبود آهن؛ پردازش تصویر؛ شبکه عصبی؛ خوشهبندی KNN | ||
عنوان مقاله [English] | ||
Detection of iron deficiency in peaches using image processing and artificial neural network model | ||
نویسندگان [English] | ||
Nasim Hajizadeh1؛ Ebrahim Sepehr1؛ Ramin Maleki2؛ Aydin Imani1 | ||
1Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran | ||
2Department of Analytical Chemistry, Academic Center for Education, Culture and Research of West Azerbaijan, Urmia, Iran. | ||
چکیده [English] | ||
Accurately and promptly monitoring the nutritional conditions of fruit orchards is crucial for providing optimal fertilizer recommendations, which in turn improves yield and enhances the quality of agricultural products. The current laboratory methods used to evaluate nutritional condition in fruit trees are expensive, challenging, time-consuming, and require an expert. In this study, image processing methods and neural network models was utilized to determine the stages of iron deficiency in peach trees. Therefore, a database containing 800 images of peach leaf samples was acquired. These images were then classified into four categories using the KNN clustering method: no deficiency, low deficiency, moderate deficiency, and severe deficiency. The preprocessing, feature extraction, and modeling operations were performed in the MATLAB software, version 2017. Features such as mean and standard deviation were extracted from the RGB, HSV, and Lab color space components of each image. Subsequently, the principal component analysis (PCA) algorithm was applied to the feature vector. To determine the optimal structure of the network, criteria including precision, accuracy, recall, and the F1-score were evaluated. These criteria helped ascertain the number of optimal inputs and the corresponding number of neurons for each combination of input features (PCs). Results indicated that the neural network model, structured as 6-36-4, achieved an accuracy of 89.73 ± 0.54%, precision of 89.59 ± 0.57%, recall of 89.52 ± 0.51%, and an F1-score of 89.55 ± 0.54% in detecting levels of iron deficiency in peach tree leaves. The findings from the confusion matrix and the developed model reveal that this method can effectively and efficiently detect the severity of iron deficiency in peach tree leaves. | ||
کلیدواژهها [English] | ||
Peaches, Iron deficiency, Image processing, Neural network, KNN clustering | ||
مراجع | ||
Balasubramaniam, P., & Ananthi, V. P. (2016). Segmentation of nutrient deficiency in incomplete crop images using intuitionistic fuzzy C-means clustering algorithm. Nonlinear Dynamics, 83, 849-866. doi: https://doi.org/10.1007/s11071-015-2372-y Barbedo, J.G.A., 2019. Detection of nutrition deficiencies in plants using proximal images and machine learning: A review. Computers and Electronics in Agriculture, 162, pp.482-492. doi: https://doi.org/10.1016/j.compag.2019.04.035 Bavaresco, L., & Poni, S. (2003). Effect of calcareous soil on photosynthesis rate, mineral nutrition, and Source‐Sink ratio of table grape. Journal of plant nutrition, 26(10-11), 2123-2135. doi: https://doi.org/10.1081/PLN-120024269 Borhan, M.S., Panigrahi, S., Satter, M.A. and Gu, H., 2017. Evaluation of computer imaging technique for predicting the SPAD readings in potato leaves. Information processing in agriculture, 4(4), pp.275-282. doi: https://doi.org/10.1016/j.inpa.2017.07.005 Condori, R. H. M., Romualdo, L. M., Bruno, O. M., & de Cerqueira Luz, P. H. (2017, October). Comparison between traditional texture methods and deep learning descriptors for detection of nitrogen deficiency in maize crops. In 2017 Workshop of Computer Vision (WVC) (pp. 7-12). IEEE. doi: https://doi.org/10.1109/WVC.2017.00009 Culman, M. A., Gomez, J. A., Talavera, J., Quiroz, L. A., Tobon, L. E., Aranda, J. M., ... & Bayona, C. J. (2017, April). A novel application for identification of nutrient deficiencies in oil palm using the internet of things. In 2017 5th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud) (pp. 169-172). IEEE. doi: https://doi.org/10.1109/MobileCloud.2017.32 Ghosal, S., Blystone, D., Singh, A. K., Ganapathysubramanian, B., Singh, A., & Sarkar, S. (2018). An explainable deep machine vision framework for plant stress phenotyping. Proceedings of the National Academy of Sciences, 115(18), 4613-4618. doi: https://doi.org/10.1073/pnas.1716999115 Han, K. A. M., & Watchareeruetai, U. (2019, July). Classification of nutrient deficiency in black gram using deep convolutional neural networks. In 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE) (pp. 277-282). IEEE. doi: https://doi.org/10.1109/JCSSE.2019.8864224 Hu, J., Li, D., Chen, G., Duan, Q., & Han, Y. (2012). Image segmentation method for crop nutrient deficiency based on fuzzy C-Means clustering algorithm. Intelligent Automation & Soft Computing, 18(8), 1145-1155. doi: https://doi.org/10.1080/10798587.2008.10643318 Imani, A., Hosseinpour, S., Keyhani, A., & Azimzadeh, M. (2020). Modeling and Optimization of Oligonucleotide-Based Nanobiosensor Using Artificial Neural Network and Genetic Algorithm Based Procedure. Iranian Journal of Biosystems Engineering, 51(1), 171-181. (In Persian with English Abstract). https://dx.doi.org/10.22059/ijbse.2019.290631.665231 Jafarbiglu, H., & Pourreza, A. (2023). Impact of sun-view geometry on canopy spectral reflectance variability. ISPRS Journal of Photogrammetry and Remote Sensing, 196, 270-286. doi: https://doi.org/10.1016/j.isprsjprs.2022.12.002 Katyal, J. C., & Sharma, B. D. (1980). A new technique of plant analysis to resolve iron chlorosis. Plant and Soil, 55, 105-119. doi: https://doi.org/10.1007/BF02149714 Leemans, V., Marlier, G., Destain, M. F., Dumont, B., & Mercatoris, B. (2017, April). Estimation of leaf nitrogen concentration on winter wheat by multispectral imaging. In Hyperspectral Imaging Sensors: Innovative Applications and Sensor Standards 2017 (Vol. 10213, pp. 45-54). SPIE. doi: https://doi.org/10.1117/12.2268398 Liu, B., Zhang, Y., He, D., & Li, Y. (2017). Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry, 10(1), 11. doi: https://doi.org/10.3390/sym10010011 Luz, P. H. D. C., Marin, M. A., Devechio, F. F. S., Romualdo, L. M., Zuñiga, A. M. G., Oliveira, M. W. S., ... & Bruno, O. M. (2018). Boron deficiency precisely identified on growth stage v4 of maize crop using texture image analysis. Communications in Soil Science and Plant Analysis, 49(2), 159-169. doi: https://doi.org/10.1080/00103624.2017.1421644 Morales, F., Grasa, R., Abadía, A., & Abadía, J. (1998). Iron chlorosis paradox in fruit trees. Journal of plant nutrition, 21(4), 815-825. doi: https://doi.org/10.1080/01904169809365444 Römheld, V. (2000). The chlorosis paradox: Fe inactivation as a secondary event in chlorotic leaves of grapevine. Journal of plant nutrition, 23(11-12), 1629-1643. doi: https://doi.org/10.1080/01904160009382129 Romualdo, L. M., Luz, P. H. D. C., Baesso, M. M., Devechio, F. D. F. D. S., & Bet, J. A. (2018). Spectral indexes for identification of nitrogen deficiency in maize. Revista Ciência Agronômica, 49, 183-191. doi: https://doi.org/10.5935/1806-6690.20180021 Samar, S. M., Shahabian, M., Fallahi, E., Davoodi, M. H., Bagheri, Y. R., & Noorgholipoor, F. (2007). Iron deficiency of apple tree as affected by increasing soil available phosphorous. Journal of plant nutrition, 30(1), 1-7. doi: https://doi.org/10.1080/01904160601054742 Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep neural networks based recognition of plant diseases by leaf image classification. Computational intelligence and neuroscience, 2016. doi: https://doi.org/10.1155/2016/3289801 Smith, B. R., & Cheng, L. (2006). Fe-EDDHA alleviates chlorosis inConcord'grapevines grown at high pH. HortScience, 41(6), 1498-1501. doi: https://doi.org/10.21273/HORTSCI.41.6.1498 Sun, Y., Gao, J., Wang, K., Shen, Z., & Chen, L. (2018). Utilization of machine vision to monitor the dynamic responses of rice leaf morphology and colour to nitrogen, phosphorus, and potassium deficiencies. Journal of Spectroscopy, 2018. doi: https://doi.org/10.1155/2018/1469314 Sulistyo, S. B., Wu, D., Woo, W. L., Dlay, S. S., & Gao, B. (2017). Computational deep intelligence vision sensing for nutrient content estimation in agricultural automation. IEEE Transactions on Automation Science and Engineering, 15(3), 1243-1257. doi: https://doi.org/10.1109/TASE.2017.2770170 Sun, Y., Tong, C., He, S., Wang, K., & Chen, L. (2018). Identification of nitrogen, phosphorus, and potassium deficiencies based on temporal dynamics of leaf morphology and color. Sustainability, 10(3), 762. doi: https://doi.org/10.3390/su10030762 Tagliavini, M., & Rombola, A. D. (2001). Iron deficiency and chlorosis in orchard and vineyard ecosystems. European Journal of Agronomy, 15(2), 71-92. doi: https://doi.org/10.1016/S1161-0301(01)00125-3 Tewari, V. K., Arudra, A. K., Kumar, S. P., Pandey, V., & Chandel, N. S. (2013). Estimation of plant nitrogen content using digital image processing. Vakilian, K. A., & Massah, J. (2017). A farmer-assistant robot for nitrogen fertilizing management of greenhouse crops. Computers and electronics in agriculture, 139, 153-163. doi: https://doi.org/10.1016/j.compag.2017.05.012 Wang, G., Sun, Y., & Wang, J. (2017). Automatic image-based plant disease severity estimation using deep learning. Computational intelligence and neuroscience, 2017. doi: https://doi.org/10.1155/2017/2917536 Zohlen, A. (2000). Use of 1, 10‐phenanthroline in estimating metabolically active iron in plants. Communications in soil science and plant analysis, 31(3-4), 481-500. doi: https://doi.org/10.1080/00103620009370451 Zhou, C., Le, J., Hua, D., He, T., & Mao, J. (2019). Imaging analysis of chlorophyll fluorescence induction for monitoring plant water and nitrogen treatments. Measurement, 136, 478-486. doi: https://doi.org/10.1016/j.measurement.2018.12.088 | ||
آمار تعداد مشاهده مقاله: 205 تعداد دریافت فایل اصل مقاله: 198 |