تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,115,360 |
تعداد دریافت فایل اصل مقاله | 97,219,453 |
ارزیابی روشهای زمینآمار برای پهنهبندی برخی ویژگیهای خاک منطقه دارنگان با کاربریهای مختلف، استان فارس | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 1، فروردین 1403، صفحه 97-116 اصل مقاله (2.28 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.367197.669596 | ||
نویسندگان | ||
حمیدرضا اولیایی* 1؛ علیرضا صالحی2؛ غلامرضا زارعیان3 | ||
1گروه علوم خاک، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج، ایران. | ||
2گروه جنگل، مرتع و آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه یاسوج. یاسوج، ایران | ||
3بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشـاورزی و منـابع طبیعـی اسـتان فـارس، سـازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران | ||
چکیده | ||
تعیین ویژگیهای فیزیکی و شیمیایی خاک بهمنظور مدیریت پایدار در مقیاسهای بزرگ، عامل مهمی در دستیابی به کشاورزی دقیق است. استفاده از اراضی و شیوههای مدیریتی مختلف بهشدت بر ویژگیهای خاک تأثیر میگذارد و آگاهی از تغییرات این خصوصیات در کاربریهای مختلف، در تعیین محدودیتهای تولید ضروری است. تجزیههای آزمایشگاهی خاک، معمولاً پرهزینه و زمانبر است. یکی از راهکارهای رفع این مشکل استفاده از زمینآمار است. این پژوهش بهمنظور ارزیابی روشهای زمینآماری برای پهنهبندی برخی ویژگیهای خاک منطقه دارنگان با کاربریهای مختلف در استان فارس انجام پذیرفت. 134 نمونه خاک سطحی با الگوی شبکهای یک در یک کیلومتر، از دو کاربری مرتعی و زراعی-باغی از منطقه برداشت و برخی ویژگیهای فیزیکوشیمیائی اندازه-گیری شد. با توجه به نتایج بهدست آمده، بهترین مدل ساختار مکانی با بالاترین دقت، برای متغیرهای مقادیر شن، قابلیت هدایت الکتریکی، کربنات کلسیم معادل، پهاش و چگالی ظاهری مدل نمایی، برای مقدار سیلت، مدل منطقی درجه دوم و برای مقادیر رس، کربن آلی و ظرفیت تبادل کاتیونی مدل کروی بود. ساختار مکانی برای کربنات کلسیم معادل ضعیف، برای کربن آلی متوسط و برای سایر متغیرها قوی بهدست آمد. از بین ویژگیهای موردمطالعه، سیلت، رس و ظرفیت تبادل کاتیونی دارای کمترین دامنه تأثیر و هدایت الکتریکی بیشترین دامنه تأثیر را داشته است. بر اساس نقشه پهنهبندی ویژگیهای موردمطالعه، مناطقی که دارای کاربری زراعی-باغی بودهاند، دارای کربن آلی، رس، ظرفیت تبادل کاتیونی، قابلیت هدایت الکتریکی بیشتر و پهاش کمتر بودند. نتایج این مطالعه قابلیت روشهای زمینآماری و GIS را بهعنوان ابزار قدرتمندی بهمنظور مدیریت مکانی ویژگیهای خاک را نشان داد. | ||
کلیدواژهها | ||
پهنهبندی؛ تغییرپذیری مکانی؛ نیمتغییرنما؛ ویژگیهای خاک | ||
عنوان مقاله [English] | ||
Assessment of geostatistical models for zoning spatial distribution of some soil properties in Darengan region with different land uses, Fars province | ||
نویسندگان [English] | ||
hamidreza owliaie1؛ Alireza Salehi2؛ Gholamreza Zareian3 | ||
1Department of Soil Science, Faculty of Agriculture, University of Yasouj, Yasouj, Iran | ||
2Department of Forestry, Range and Watershed Management, Agricultural and Natural Resources, Yasouj University, Yasouj, Iran | ||
3Department of Soil and Water Research, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran. | ||
چکیده [English] | ||
Determination of the physico-chemical characteristics of soil for sustainable agriculture on large scales is an important factor in achieving a precision agriculture. Different land use and management practices greatly impact soil properties, and knowledge of the variation in soil properties within different land uses, is essential in determining production constraints related to soil characteristics. Laboratory analyses of the soil properties are usually expensive and time consuming. Surmounting these problems is possible using geostatistics. This study was conducted to assess geostatistical methods for the spatial distribution of some soil properties of Darengan region with different land uses in Fars province. 134 surface soil samples at an interval of 1.0 × 1.0 km on a grid design were taken from pasture and agricultural land uses. Physico-chemical characteristics of the soil samples were analyzed. According to the results, the best spatial structure model with the highest accuracy was exponential model for the variables of sand, EC, CCE, pH, and BD, rational quadratic model for silt, and spherical model for clay, OC, and CEC. The spatial structure was weak for CCE, medium for organic carbon, and strong for the other variables. Among the characteristics studied, the variables of silt, clay and cation exchange capacity have the lowest range, and EC has the highest range. Based on the zoning map of the studied properties, the areas with agricultural land use had greater OC, clay, CEC, EC and lower pH. Understanding soil properties with their spatial dependency is of crucial importance for understanding the behavior of soil and hence providing better soil management. | ||
کلیدواژهها [English] | ||
Zoning, Spatial variability, Semi-variable, Soil properties | ||
مراجع | ||
Ahmadi, A., Toranjzar, H. & Kazemi, A. (2019). Mapping Soil Salinity in Boulagh (Saveh) Saline Lands Using Geostatistical Methods. Journal of Natural Environmental Hazards, 8 (19): 1-14. (In Persian) Ahmadivand, M., Zamani, J., Shekofteh, H. & Abbaszadeh Afshar, F. (2023). The effect of land use change on some physical and chemical properties of soil. Environmental Erosion Research, 13 (2): 210-234. (In Persian) Alizadeh, A., Sheykheslami, A., Kiadaliri, H., Khazaei Poul, S., Salmanian, M. & Ramezani Poul, M. (2019). Achieving optimal dimensions for systematic sampling of forest using variography method in geostatistics (case study: series 5 of Safarood Ramsar forestry plan). Forest Research and Development, 5(4): 645-656. (In Persian) Asadzadeh, F., Khosraviaqdam, K. Yaghmaeian Mahabadi, N. & Ramezanpour, H. (2019). Spatial variation of mineral particles of the soil using remote sensing data and geostatistics to the soil texture interpolation. Journal of Water and Soil, 32 (6): 1207-1222. (In Persian) Askari, S., Owliaie, H.R., Safari, Y. Sedghi Asl, M. (2019). Spatial variability of some soil fertility characteristics as affected by land use change, Yasouj region. Journal of Soil Management and Sustainable Production, 9(1): 65-81. (In Persian) Ayoubi, Sh., Mohammad Zamani, S. & Khormali, F. (2007). Spatial variability of some soil properties for site specific farming in northern Iran. International Journal of Plant Production 1(2): 225-236 Bangroo, S.A., Sofi, J., Bhat, M., Mir, Sh., Mubarak, T. & Bashir, O. (2021). Quantifying spatial variability of soil properties in apple orchards of Kashmir, India, using geospatial techniques. Arabian Journal of Geosciences, 14: 2047. https://doi.org/10.1007/s12517-021-08457-6 Behnam, V., Gholamalizadeh Ahangar, A., Rahmanian, M. & Bameri A. (2019). Spatial distribution of some physical and chemical properties of soil using geostatistic methods (Case study: Zabol to Zahedan route). Journal of Environment and Water Engineering, 5(3): 251-263. (In Persian) DOI: 10.22034/ jewe.2019.200821.1330. Bijanzadeh, E., Mokarram, M. & Naderi, R. (2014). Applying spatial geostatistical analysis models for evaluating variability of soil properties in Eastern Shiraz, Iran. Iran Agricultural Research, 33, 35-46. Blake, G.R. & Hartge, K. (1986). Bulk density. P. 363-375. A. Klute (ed.) Methods of Soil Analysis. Physical and Mineralogical Methods. Part 1. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Cao, C., Jiang, S., Ying, Z., Zhang, F. & Han, X. (2011). Spatial variability of soil nutrients and microbiological properties after the establishment of leguminous shrub Caragana microphylla Lam. plantation on sand dune in the Horqin sandy land of Northeast China. Ecological Engineering, 37.10. 1467-1475. Chapman, HD. (1965). Cation exchange capacity. In: Black CA, editor. Methods of soil Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F. & Konopka, A.E. (1994). Field-Scale variability of soil properties in central Iowa soils. Journal of Soil Science Society of America, 58 (3): 1501-1511. https://doi.org/ 10.2136/sssaj1994. 03615995005800050033x Chen, H., Shen, Z., Liu, G., & Tong, Z. (2009). Spatial variability of soil fertility factors in the Xiangcheng tobacco planting region, China. Frontiers of Biology in China, 4:3. 350-357. Chen, S., Arrouays, D., Leatitia Mulder, V., Poggio, L. & et al. (2022). Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma, 409: 116957. https://doi.org/10.1016/j.geoderma.2021.115567 Danesh, M., Taghipour, F., Emadi, M. & Ghajar Sepanlou, M. (2022). The interpolation methods and neural network to estimate the spatial variability of soil organic matter affected by land use type. Geocarto International, 37, 11306-11315. doi.org/10.1080/10106049.2022.2048905 Foroughifar, H., Jafarzadah, A.A., Torabi, H. Gelsefidi, H. Aliasgharzadah, N. Toomanian, N. & Davatgar, N. (2011) Spatial variations of surface soil physical and chemical properties on different landforms of Tabriz Plain. Water and Soil Science, 21(3): 1-21. (In Persian) Gee, G.W., & Bauder, J.W. (1986). Particle-size analysis. In ‘Methods of soil analysis, Part 1. Agronomy Monograph, Vol. 9’. 2nd ed. (Ed. A. Klute) pp. 383–411. (American Society of Agronomy: Madison, WI, USA) Geocarto International 37 (26). tps://doi.org/ 10.1080/ 10106049. 2022.2048905 Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. Oxford University Press, New York, 483p. Gunarathna, M. H. J. P., Nirmanee, K. G. S., & Kumari, M. K. N. (2016). Are geostatistical interpolation methods better than deterministic interpolation methods in mapping salinity of groundwater? International Journal Research Innovation Earth Science, 3(3): 59-64. Habashi, H., Hosseini, Mohammadi, J. & Rahmani, R. (2007). Geostatistic applied in forest soil studying processes. Journal of Agricultural Science and Natural Science, 14: 18-27. (In Persian) Hasani Pak, A.A. (2011). Geostatistics. Tehran University Press, 314 P. (In Persian) Jalali, Gh., Tehrani, M.M., Broomand, N. & Sanjari, S. (2013). Comparison of geostatistical methods for mapping the spatial distribution of some nnutrients in the East of Mazandaran Province. Soil Researches, 27(2): 195-204. (In Persian) Johnson, K., Ver Hoef, J. M., Krivoruchko, K. & Lucas, N. (2001). Using ArcGIS Geostatistical Analyst. GIS by ESRI. Redlands, USA. 306 p. Kazemi Poshtmasari, H., Tahmasebi, Z., Kamkar, B., Shataei, Sh. & Sadeghi, S. (2012). Evaluation of geostatistical methods for estimating and zoning of macronutrients in agricultural lands of Golestan Province. Water and Soil Science, 22(1): 201-220. (In Persian) Minasny, B., & McBratney, A. B. (2016). Digital soil mapping: A brief history and some lessons. Geoderma, 264: 301-311. Mehmandoost, F., Owliaie, H.R., Adhami, E. & Naghiha, R. (2018). Effect of land use change on some physicochemical and biological properties of the soils of Servak Plain, Yasouj region. Soil and Water, 32(3): 587-599. (In Persian) Nasiri, E., Owliaie, H.R., Safari, Y. & Sedghi Asl, M. (2019). Geostatistical assessing of some soil properties variability due to the oak land deforesting in Mokhtar plain, Yasouj. Applied Soil Research, 7 (3): 83-97. (In Persian) Nelson, D.W., & Sommers, L.E. (1982). Total carbon, organic carbon, and matter. In ‘Methods of soil analysis. Part 2. Agronomy Monograph, Vol. 9’. 2nd ed. (Eds. AL Page, RH Miller, DR Keeney) pp. 539–577. (American Society of Agronomy: Madison, WI, USA) Nelson, R.E. (1982) Carbonate and gypsum. In ‘Methods of soil analysis. Part 2’. (Eds AL Page, RH Miller, DR Keeney) pp. 181–197. (American Society of Agronomy: Madison, WI, USA). Owliaie, H. R., Adhami, E. & Najafi Ghiri, M. (2022). Changes in soil magnetic properties and iron oxides following land use change (Case study: Mokhtar Plain, Kohgilouye Province). Journal of Water and Soil, 36(2): 267-282. (In Persian) Qu, L., Lu, H., Tian, Z., Schoorl, J.M., Huang, B., Liang, Y., Qiu, D. & Liang, Y. (2024). Spatial prediction of soil sand content at various sampling density based on geostatistical and machine learning algorithms in plain areas. Catena, 234: 107572. https://doi.org/10.1016/j.catena. 2023.107572 Quine, T. A. & Zhang, Y. (2002). An investigation of spatial variation in soil erosion, soil properties and crop production within an agricultural field in Devon, U.K. J. Soil and Water Conservation. 57: 50-60. Santra, P., Chopra, U. K. & Chakraborty, D. (2008). Spatial variability of soil properties and its application in predicting surface map of hydraulic parameters in an agricultural farm. Current Science, 95:7. 937-945. Sarangi, A., Madramootoo, C.A., & Enright, P. (2006). Comparison of spatial variability techniques for runoff estimation from a Canadian Watershed. Biosystems Engineering, 95:2. 295-308. Savage, M.J. (1993). Statistical aspects of model validation. Presented at a workshop on the field water balance in the modeling of cropping systems, University of Pretoria, South Africa. Shabani, H., Delavar, M.A., Safari, Y. & Alamdari, P. (2018). Spatial variability of some soil characteristics in lands of Zanjan University. Applied Soil Researcg, 7(4): 164-178. (In Persian) Soil Survey Staff. (2022). Keys to Soil Taxonomy, 13th edition. USDA Natural Resources. Conservation Service. USA. Taati, A., Sarmadian, F., Motaghian, H. & Mousavi, R. (2020). Mapping features of surface and depth, soil profiles by using geostatistical techniques in part of Qazvin Plain. Human and Environment, 52: 67-81. (n Persian) Utset, A., T. Lopez, & M. Dıaz, (2000). A comparison of soil maps, kriging and a combined method for spatially predicting bulk density and field capacity of Ferralsols in the Havana–Matanzas Plain. Geoderma, 96(3): 199-213. Wackernagel, H. (2003). Geostatistical models and kriging, IFAC Proceedings, 36: 543-548. Webster, R. & Oliver, M. A. (2007). Geostatistics for environmental scientists (Second Edition ed.). The Atrium, Southern Gate, Chichester, England: John Wiley and Sons. 330 p. Wu, W., Xiu, D. T. & Liu, H. B. (2008). Spatial variability of soil heavy metals in the three gorges area, Multivariate and Geostatistical analysis. Journal of Environmental Monitoring Assessment, 157, 63-71. Xing-Yi, Z., Yue-Yu', S., Xu Dong, Z., Kai, M. & Herbert, S.J. (2007). Spatial Variability of Nutrient Properties in Black Soil of Northeast China. Pedosphere, 17(1), 19-29. Zareian, Gh. & Hasanshahi, M.H. (2004). Revision of semi-detailed studies of soil science and suitability of lands for major crops in Darengoon plain (Fars province). Final report of the research project. Soil and Water Research Institute. (In Persian) Zareian, F., Mahmoudi, J. & Javadi, M.R. (2014). Predicating the spatial variability of some soil properties by using geostatistic methods in Darreh Viseh, Karaj. Soil Researches, 28(3): 511-520. (In Persian) Zeraatpisheh, M., Bottega, E.L. Bakhshandeh, E., Owliaie, H.R., Taghizadeh-Mehrjardi, Kerry, R., Scholten, T., & Xu, M. (2022). Spatial variability of soil quality within management zones: homogeneity and purity of delineated zones. Catena, 209 (1) 105835 10.1016/j. catena. 2021.105835 Zhang, X., Chen, S., Xue, J., Wang, N., Xiao, Y., Chen, Q., & Shi, Z. (2023). Improving model parsimony and accuracy by modified greedy feature selection in digital soil mapping. Geoderma, 432: 116383. Zhang, X., Lin, F., Jiang, Y., Wang, K., & Feng, X. L. (2009). Variability of total and available copper concentrations in relation to land use and soil properties in Yangtze River Delta of China. Environmental monitoring and assessment, 155(1), 205-213. | ||
آمار تعداد مشاهده مقاله: 178 تعداد دریافت فایل اصل مقاله: 191 |