تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,114,684 |
تعداد دریافت فایل اصل مقاله | 97,218,448 |
بررسی بهبود کیفی پساب درگذر از محیطهای غیراشباع و اشباع در سیستم ذخیره-احیاء آبخوان (مقیاس آزمایشگاهی) | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 1، فروردین 1403، صفحه 131-143 اصل مقاله (1.16 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.346883.669338 | ||
نویسندگان | ||
مرتضی موگویی1؛ مجید خلقی* 2؛ عبدالحسین هورفر3؛ عبدالمجید لیاقت4 | ||
1دانشجوی دکترا گروه مهندسی آبیاری و آبادانی، دانشکده کشاورزی دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران-کرج-ایران | ||
2استاد گروه مهندسی آبیاری و آبادانی دانشکده کشاورزی دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران-کرج-ایران | ||
3استاد گروه مهندسی آبیاری و آبادانی دانشکده کشاورزی دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران-کرج-ایران | ||
4استاد گروه مهندسی آبیاری و آبادانی دانشکده کشاورزی دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران | ||
چکیده | ||
افت تراز سطح آب زیرزمینی در اکثر آبخوانهای کشور باعث وقوع مسئله محیطزیستی شده است. در این مسیر رویکرد ذخیره-احیاء آبخوانها با استفاده از پساب میتواند راهکار مناسبی برای احیاء سفرههای آب زیرزمینی بحرانی باشد. در این راستا، در این پژوهش برهمکنش پساب، خاک و آب آبخوان ازنظر کیفی، با عبور پساب از نواحی غیراشباع و اشباع مورد بررسی قرار گرفت. به این منظور، مدل آزمایشگاهی به شکل L، از جنس لولهPVC به قطر mm200 و طول m 15(5/2 متر قائم برای ناحیه غیراشباع و 5/12 متر افقی برای ناحیه اشباع)، ساخته شد. سپس در 12 نقطه در طول مسیر جریان، برخی از آلایندههای موجود در پساب به مدت 60 روز اندازهگیری شدند. نتایج نشان داد غلظت نیترات پس از طی مسافت 7متر به کمتر ازmg/L5/0 رسید و آلایندههای میکروبی(کلی فرم و اشریشیاکلی) پس از 6 متر در نمونه cc100 حذف شدهاند. ازنظر شوری، پساب باعث بهبود کیفیت آبوخاک شد و هدایت الکتریکی آن از حدود 4 به 3/3 dS/m کاهش یافت. BOD و COD به ترتیب 81، 87 درصد کاهش داشتند. با توجه به بهبود کیفیت پساب درگذر از محیطهای غیراشباع و اشباع، میتوان سامانه ذخیره-احیاء را طوری اجرا کرد که پساب، ابتدا از محیط غیراشباع عبور کرده و سپس به آبخوان برسد. | ||
کلیدواژهها | ||
پساب؛ غیراشباع؛ اشباع؛ ذخیره؛ آزمایشگاه | ||
عنوان مقاله [English] | ||
Treated wastewater quality improvement through the unsaturated and saturated zones in an aquifer storage and recovery system (laboratory scale) | ||
نویسندگان [English] | ||
Morteza Moogooei1؛ Majid Kholghi2؛ Abdolhossein Hoorfar3؛ Abdolmajid Liaghat4 | ||
1PhD Candidate, Department of Irrigation and Reclamation. Eng.Dept. -Faculty of Agriculture- Agricultural and Natural Resources Faculties-University of Tehran-Karaj-Iran | ||
2Irrigation and Reclamation Eng. Dept. -Faculty of Agriculture- Agricultural and Natural Resources Faculties-University of Tehran-Karaj-Iran | ||
3Irrigation and Reclamation Engineering Dept.-Faculty of Agriculture- Agricultural and Natural Resources Faculties-University of Tehran-Karaj-Iran | ||
4Irrigation and Reclamation Eng. Dept.-Faculty of Agriculture- Agricultural and Natural Resources Faculties-University of Tehran-Karaj-Iran | ||
چکیده [English] | ||
The groundwater level decline has caused an environmental issue in most of the Iranian aquifers. In this regard, aquifer storage and recovery (ASR) system can be used as a solution. On the other hand, the huge volume of treated wastewater in big cities can be used as a water source for aquifer storage purpose. In this study, the treated wastewater, soil and groundwater quality have been investigated through the unsaturated-saturated porous media. An experimental model, as L-shaped, has been designed using PVC pipe material with a diameter of 200 mm and a length of 15 m (2.5 m vertical and 12.5 m horizontal). The wastewater used in this research was obtained from the outlet of the sewage treatment plant in the south of Tehran. In order to avoid changes in the quality of wastewater during storage in the tank, it was tried to a regular change the treated wastewater in short intervals. After the initial investigations, a zone situated in center of in the Feshafuye plain, has been selected for treated wastewater injection. Then the required soil for laboratory setup has been collected for tis area. In this regard, firstly, the surface layer soil was removed, then the subsurface soil was transferred to the laboratory for the experimental setup. The required inflow water for this setup was taken from the aquifer of the same area and was changed regularly in order to establish the maximum real conditions. During this study, treated wastewater have been sampled and analyzed at 12 points along the flow path for 60 days. The results showed that the nitrate concentration decreased to less than 0.5 ppm after 7 m and microbial pollutants, total coliform and E. coli had been removed in a 100-cc sample after 6 m. In terms of salinity, the treated wastewater and soil quality have been improved from an EC of 4 to 3.3 dS/m. The BOD and COD have decreased by 81% and 87%, respectively. Due to improvement of treated wastewater quality through the unsaturated- saturated porous media, the ASR system can be implemented as a solution to prevent the groundwater level decline. | ||
کلیدواژهها [English] | ||
wastewater, unsaturated, saturated, storage, laboratory | ||
مراجع | ||
Amin, H., Gad, A., El-Rawy, M., Abdelghany, U., & Sadeek, R. (2021). Assessment of wastewater contaminant concentration through the vadose zone in a soil aquifer treatment system. Applied Ecology and Environmetal Research, 19(3), 2385-2403. Calderer, M., Martí, V., De Pablo, J., Guivernau, M., Prenafeta-Boldú, F. X., & Viñas, M. (2014). Effects of enhanced denitrification on hydrodynamics and microbial community structure in a soil column system. Chemosphere, 111, 112-119. Coutinho, J. V., Almeida, C. d. N., Silva, E. B. d., Stefan, C., Athayde Júnior, G. B., Gadelha, C. L. M., & Walter, F. (2018). Managed aquifer recharge: study of undisturbed soil column tests on the infiltration and treatment capacity using effluent of wastewater stabilization pond. RBRH, 23. Grinshpan, M., Furman, A., Dahlke, H. E., Raveh, E., & Weisbrod, N. (2021). From managed aquifer recharge to soil aquifer treatment on agricultural soils: Concepts and challenges. Agricultural Water Management, 255, 106991. Garduño-Jiménez, A. L., Durán-Álvarez, J. C., Cortés-Lagunes, R. S., Barrett, D. A., & Gomes, R. L. (2022). Translating wastewater reuse for irrigation from OECD guideline: Tramadol sorption and desorption in soil-water matrices. Chemosphere, 135031. Hamdan, N., Kavazanjian Jr, E., Rittmann, B. E., & Karatas, I. (2017). Carbonate mineral precipitation for soil improvement through microbial denitrification. Geomicrobiology journal, 34(2), 139-146. Javani, H., Liaghat, A., Hassangholi, A. (2013). Assessing the rate of transfer of inorganic and biological contaminants present in the wastewater to the soil profile as a result of artificial recharge operations. Journal of Water and Soil (Agricultural Science and Technology), 27 (2), 422-431(In Persian). Kholghi, M. Moogooei, M. Poozan, A. Bagheri, M (2017) Management of aquifer storage and recovery in Fashafouye plain from Robatkarim to Anisabad. Technical report, 152p (In Persian). Li, R., Zhang, Y., & Guan, M. (2022). Investigation into pyrite autotrophic denitrification with different mineral properties. Water Research, 221, 118763. Liang, X., Rengasamy, P., Smernik, R., & Mosley, L. M. (2021). Does the high potassium content in recycled winery wastewater used for irrigation pose risks to soil structural stability? Agricultural Water Management, 243, 106422. Lin, W., Lin, W., Cheng, X., Chen, G., & Ersan, Y. C. (2021). Microbially induced desaturation and carbonate precipitation through denitrification: a review. Applied Sciences, 11(17), 7842. Liu, C., Liu, F., Andersen, M. N., Wang, G., Wu, K., Zhao, Q., & Ye, Z. (2021). Domestic wastewater infiltration process in desert sandy soil and its irrigation prospect analysis. Ecotoxicology and Environmental Safety, 208, 111419. Madrid, F., Lopez, R., & Cabrera, F. (2007). Metal accumulation in soil after application of municipal solid waste compost under intensive farming conditions. Agriculture, Ecosystems & Environment, 119(3), 249-256. Morrison, C. M., Betancourt, W. Q., Quintanar, D. R., Lopez, G. U., Pepper, I. L., & Gerba, C. P. (2020). Potential indicators of virus transport and removal during soil aquifer treatment of treated wastewater effluent. Water research, 177, 115812. Mazaheri, F., & Mozaffari, J. (2019). Experimental study of wastewater artificial recharge and its effect on nitrate concentrations. Journal of Water Process Engineering, 31, 100862. Nandha, M., Holden, B., Jefferson, B., Jeffrey, P., & Le Corre, K. (2013). The Relationship between Source and Recovered Water Quality during Storage in a Sherwood Sandstone Aquifer. Nguyen, H. T., Kim, Y., Choi, J. W., Cho, K., & Jeong, S. (2020). Assimilable organic carbon removal strategy for aquifer storage and recovery applications. Environmental Research, 191, 110033. Ollivier, P., Surdyk, N., Azaroual, M., Besnard, K., Casanova, J., & Rampnoux, N. (2013). Linking water quality changes to geochemical processes occurring in a reactive soil column during treated wastewater infiltration using a large-scale pilot experiment: Insights into Mn behavior. Chemical Geology, 356, 109-125. Olsthoorn, T. N. (1982). Clogging of recharge wells: main subjects. In KIWA-communications (Vol. 72): KIWA. Page, D., Vanderzalm, J., Barry, K., Torkzaban, S., Gonzalez, D., & Dillon, P. (2015). E. coli and turbidity attenuation during urban stormwater recycling via aquifer storage and recovery in a brackish limestone aquifer. Ecological Engineering, 84, 427-434. Paredez, J. M., Mladenov, N., Galkaduwa, M. B., Hettiarachchi, G. M., Kluitenberg, G. J., & Hutchinson, S. L. (2017). A soil column study to evaluate treatment of trace elements from saline industrial wastewater. Water Science and Technology, 76(10), 2698-2709. Pavelic, P., Nicholson, B. C., Dillon, P. J., & Barry, K. E. (2005). Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water. Journal of contaminant hydrology, 77(4), 351-373. Rekha, K., & Lokeshappa, B. (2020). Comparative studies on removal of heavy metals from electroplating wastewater through soil aquifer treatment (SAT) in conjunction with adsorbents. Water Science and Technology, 82(10), 2148-2158. Smith, C., Hopmans, P., & Cook, F. (1996). Accumulation of Cr, Pb, Cu, Ni, Zn and Cd in soil following irrigation with treated urban effluent in Australia. Environmental Pollution, 94(3), 317-323. Tanmoy, D. S., Bezares-Cruz, J. C., & LeFevre, G. H. (2022). The use of recycled materials in a biofilter to polish anammox wastewater treatment plant effluent. Chemosphere, 296, 134058. Xu, J., Wu, L., Chang, A. C., & Zhang, Y. (2010). Impact of long-term reclaimed wastewater irrigation on agricultural soils: a preliminary assessment. Journal of hazardous materials, 183(1), 780-786. | ||
آمار تعداد مشاهده مقاله: 143 تعداد دریافت فایل اصل مقاله: 133 |