
تعداد نشریات | 163 |
تعداد شمارهها | 6,823 |
تعداد مقالات | 73,558 |
تعداد مشاهده مقاله | 134,673,954 |
تعداد دریافت فایل اصل مقاله | 105,202,999 |
A Brief Review of Synthesis Methods, Biological Activities, and Cytotoxicity of Cerium Oxide Nanoparticles | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 1، دوره 19، شماره 3، مهر 2025، صفحه 405-414 اصل مقاله (2.02 M) | ||
نوع مقاله: Review article | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.19.3.1005519 | ||
نویسندگان | ||
Behnaz Karimi* 1؛ Saman Yousefi2 | ||
1Department of Basic Science, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran | ||
2Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran. | ||
چکیده | ||
Cerium oxide nanoparticles (CeO2-NPs, or nanoceria) are among the most unique and promising lanthanide nanomaterials, with unique properties like redox activity, oxygen storage capacity, and free radical scavenging ability. Their ability to self-regenerate their surface makes them potential candidates in different fields, especially the biomedical division. The mechanisms by which nanoceria protect against oxidative stress include direct scavenging of radicals by mimicking the catalytic activity of redox enzymes. Depending on the surface characteristics and environment, nanoceria can act as a double-edged sword and display oxidant and antioxidant properties. Despite their potential for clinical applications, contradictory studies have reported the potential toxicity of CeO2-NPs. This review describes the synthesis methods of CeO2-NPs, the applications of nanoceria for antioxidant, anti-inflammatory, and anticancer activities, including the most recent studies carried out in vivo and in vitro, and their cytotoxic activity. | ||
کلیدواژهها | ||
Cerium oxide nanoparticles (CeO2-NPs)؛ Nanoceria؛ Antioxidant؛ Synthesis؛ Cytotoxic activity | ||
اصل مقاله | ||
Introduction
The parameters of the technique, such as the amount of aging, temperature, and pH, were used to alter the properties of the resulting nanoparticles. By adjusting these factors, nanoparticles with a specific size, shape, stability, and oxidative ratio 3+/4+ can be produced (Karakoti et al., 2012). CeO2-NPs are typically produced by stirring a cerium precursor, such as cerium (III) nitrate, cerium (III) sulfate, or cerium (II) chloride, with an oxidant, such as ammonia or hydrogen peroxide. It is also possible to change the resulting oxidation state of CeO2-NPs by adjusting the concentration of reagents and the proportion of precursor to the oxidizer (Abuid et al., 2020). The precipitation method is the most convenient technique that can be performed at both room and higher temperatures. The precipitation method was derived using two approaches. Hydrothermal synthesis refers to synthesis through chemical reactions, in which water plays a significant role as a solvent (Thakur et al., 2019). The hydrothermal crystallization method was first used by Masui et al. (2002) Based on their experiments, cerium chloride hexahydrate, citric acid, and ammonia water were used as precursors. The obtained nanoceria particles were spherical with an average diameter of 5 nm. This study used citric acid due to its inhibitory impact on particle growth. Solvothermal synthesis uses organic solvents in a high-pressure and high-temperature chamber to produce nanomaterials of various sizes (Nyoka et al., 2020). As expected, many traditional synthesis methods exhibit low biocompatibility. Green synthesis is an eco-friendly, sustainable, and cost-effective process. In the case of nanoceria, the green synthesis method involves a variety of approaches, such as plant-mediated synthesis, microorganism-mediated synthesis, and green chemistry-based techniques. It is also indicated that all green techniques have the same spherical nanoparticle form, but the size of the particles varies depending on the technique, ranging from 2 to 36 nm (Anvar et al., 2023; Sharmila et al., 2019). Additionally, nanoparticles are coated by several major active proteins in egg whites, such as ovalbumin and lysozyme. These proteins can simultaneously bind to both cationic and anionic metal complexes. The electrostatic interactions between cerium ions (Ce3+) and proteins with opposite charges promote the developing and forming small, stable, and isotropic nanoparticles (Rajeshkumar & Naik, 2018).
References Abuid, N. J., Gattás-Asfura, K. M., LaShoto, D. J., Poulos, A. M., & Stabler, C. L. (2020). Biomedical applications of cerium oxide nanoparticles: A potent redox modulator and drug delivery agent. Nanoparticles for Biomedical Applications, 220, 283-301. [DOI:10.1016/B978-0-12-816662-8.00017-5] Alpaslan, E., Geilich, B. M., Yazici, H., & Webster, T. J. (2017). PH-Controlled Cerium Oxide Nanoparticle Inhibition of Both Gram-Positive and Gram-Negative Bacteria Growth. Scientific Reports, 7, [DOI:10.1038/srep45859] [PMID] Anvar, S. A. A., Nowruzi, B. and Afshari, G. (2023). A review of the application of nanoparticles biosynthesized by microalgae and cyanobacteria in medical and veterinary sciences. Iranian Journal of Veterinary Medicine, 17(1), 1-18. [DOI:10.32598/IJVM.17.1.1005309] Aplak, E., von Montfort, C., Haasler, L., Stucki, D., Steckel, B., & Reichert, A. S., et al. (2020). CNP mediated selective toxicity on melanoma cells is accompanied by mitochondrial dysfunction. Plos One, 15(1), e0227926. [DOI:10.1371/journal.pone.0227926] [PMID] Battaglini, M., Tapeinos, C., Cavaliere, I., Marino, A., Ancona, A., & Garino, N., et al. (2019). Design, fabrication, and in vitro evaluation of nanoceria-loaded nanostructured lipid carriers for the treatment of neurological diseases. ACS biomaterials science & engineering, 5(2), 670–682.[DOI:10.1021/acsbiomaterials.8b01033] [PMID] Corsi, F., Deidda Tarquini, G., Urbani, M., Bejarano, I., Traversa, E., & Ghibelli, L. (2023). The impressive anti-inflammatory activity of cerium oxide nanoparticles: More than Redox?. Nanomaterials (Basel, Switzerland), 13(20), 2803. [DOI:10.3390/nano13202803] [PMID] De Marzi, L., Monaco, A., De Lapuente, J., Ramos, D., Borras, M., & Di Gioacchino, M., et al. (2013). Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro. International Journal of Molecular Sciences, 14(2), 3065-3077. [DOI:10.3390/ijms14023065] [PMID] Dhall, A., Self, W. (2018). Cerium oxide nanoparticles: A brief review of their synthesis methods and biomedical applications. Antioxidants (Basel, Switzerland), 7(8), 97. [DOI:10.3390/antiox7080097] [PMID] Dowding, J., Dosani, T., Kumar, A., Seal, S., & Self, W. T. (2012). Cerium oxide nanoparticles scavenge nitric oxide radical (˙ NO). Chemical Communications, 48(40), 4896-4898. [DOI:10.1039/c2cc30485f] [PMID] Eitan, E., Hutchison, E. R., Greig, N. H., Tweedie, D., Celik, H., & Ghosh, S., et al. (2015). Combination therapy with lenalidomide and nanoceria ameliorates CNS autoimmunity. Experimental Neurology, 273, 151-160. [DOI:10.1016/j.expneurol.2015.08.008] [PMID] Estevez, A. Y., Ganesana, M., Trentini, J. F., Olson, J. E., Li, G., & Boateng, Y. O., et al. (2019). Antioxidant enzyme-mimetic activity and neuroprotective effects of cerium oxide nanoparticles stabilized with various ratios of citric acid and EDTA. Biomolecules, 9(10), 562. [DOI:10.3390/biom9100562] [PMID] Estevez, A. Y., Pritchard, S., Harper, K., Aston, J. W., Lynch, A., & Lucky, J. J., et al. (2011). Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radical Biology and Medicine, 51(6), 1155-1163. [DOI:10.1016/j.freeradbiomed.2011.06.006] [PMID] Giri, S., Karakoti, A., Graham, R. P., Maguire, J. L., Reilly, C. M., & Seal, S., et (2013). Nanoceria: A rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer. Plos One, 8(1), e54578. [DOI:10.1371/journal.pone.0054578] [PMID] Hirst, S. M., Karakoti, A. S., Tyler, R. D., Sriranganathan, N., Seal, S., & Reilly, C. M. (2009). Anti-inflammatory properties of cerium oxide nanoparticles. Small (Weinheim an der Bergstrasse, Germany), 5(24), 2848–2856. [DOI:10.1002/smll.200901048] [PMID] Hosseini, M., & Mozafari, M. (2020). Cerium oxide nanoparticles: Recent advances in tissue engineering. Materials (Basel, Switzerland), 13(14), 3072. [DOI:10.3390/ma13143072] [PMID] Hossieni, M., Kiani, S. J., Tavakoli, A., Kachooei, A., Habib, Z., & Monavari, S. H. (2024). In vitro inhibition of rotavirus multiplication by copper oxide nanoparticles. Archives of Razi Institute, 79(1), 83-91 [DOI:10.32592/ARI.2024.79.1.83] [PMID] Hussain AlDulaimi, L. (2024). Effect of Oxidative Stress on Histological and Immunohistochemical Changes in Testes of Albino Mice. Iranian Journal of Veterinary Medicine, 18(2), 187-194. [DOI:10.32598/IJVM.18.2.1005459] Karimi, B., Ashrafi, M., Shomali, T., & Yektaseresht, A. (2019). Therapeutic effect of simvastatin on DMBA-induced breast cancer in mice. Fundamental & Clinical Pharmacology, 33(1), 84-93. [DOI:10.1111/fcp.12397] [PMID] Kalashnikova, I., Chung, S. J., Nafiujjaman, M., Hill, M. L., Siziba, M. E., & Contag, C. H., et al. (2020). Ceria-based nanotheranostic agent for rheumatoid arthritis. Theranostics, 10(26), 11863–11880. [DOI:10.7150/t49069] [PMID] Kannan, S. K., & Sundrarajan, A. M. (2014). A Green Approach for the Synthesis of a Cerium Oxide Nanoparticle: Characterization and Antibacterial Activity. International Journal of Nanoscience, 13(3), 1450018 [DOI:10.1142/S0219581X14500185] Karakoti, A. S., Munusamy, P., Hostetler, K., Kodali, V., Kuchibhatla, S., & Orr, G., et al. (2012). Preparation and characterization challenges to understanding environmental and biological impacts of ceria nanoparticles. Surface and Interface Analysis, 44(5),882–889. [DOI:10.1002/sia.5006] [PMID] Karimi, B., Mardani, M., Kaboutari, J., Javdani, M., Albadi, J., & Shirian, S. (2024). Green synthesis of copper oxide nanoparticles using Artemisia annua aqueous extract and its characterization, antioxidant, and burn wound healing activities. Chemical Papers, 78(1), 231-243. [DOI:10.1007/s11696-023-03069-8] Kumari, M., Singh, S. P., Chinde, S., Rahman, M. F., Mahboob, M., & Grover, P. (2014). Toxicity study of cerium oxide nanoparticles in human neuroblastoma cells. International Journal of Toxicology, 33(2), 86-97. [DOI:10.1177/1091581814522305] [PMID] Kwon, H. J., Cha, M. Y., Kim, D., Kim, D. K., Soh, M., & Shin, K., et al. (2016). Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer›s disease. ACS Nano, 10(2), 2860–2870. [DOI:10.1021/acsnano.5b08045] [PMID] Lin, Y. W., Fang, H., Meng, F. Q., Ke, C. J., & Lin, F. H. (2020).Hyaluronic acid loaded with cerium oxide nanoparticles as antioxidant in hydrogen peroxide induced chondrocytes injury: An in vitro osteoarthritis model. Molecules, 25(19), 4407. [DOI:10.3390/molecules25194407] [PMID] López, J. M., Gilbank A. L., García T., Solsona B., Agouram S., & Torrente-Murciano L. (2015). The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Applied Catalysis B: Environmental, 174-175, 403-412. [DOI:10.1016/j.apcatb.2015.03.017] Lu, M., Zhang, Y., Wang, Y., Jiang, M., & Yao, X. (2016). Insight into several factors that affect the conversion between antioxidant and oxidant activities of nanoceria. ACS Applied Materials & Interfaces, 8(36), 23580–23590. [DOI:10.1021/acsami.6b08219] [PMID] Ma, Y., Gao, W., Zhang, Z., Zhang, S., Tian, Z., & Liu, Y., et al. (2018). Regulating the surface of nanoceria and its applications in heterogeneous catalysis. Surface Science Reports, 73(1), 1e36. [DOI:10.1016/j.surfrep.2018.02.001] Machhi, J., Yeapuri, P., Markovic, M., Patel, M., Yan, W., & Lu, Y., et al. (2022). Europium-doped cerium oxide nanoparticles for microglial amyloid beta clearance and homeostasis. ACS Chemical Neuroscience, 13(8), 1232-1244. [DOI:10.1021/acschemneuro.1c00847] [PMID] Masui, T., Hirai, H., Imanaka, N., Adachi, G., Sakata, T., & Mori, H. (2002). Synthesis of cerium oxide nanoparticles by hydrothermal crystallization with citric acid. Journal of Materials Science Letters, 21, 489-491. [DOI:10.1023/A:1015342925372] Miakhil, A., Kamkar, A., & Banuree, S. A. H. (2024). Physicochemical Properties and Antioxidant Activity of Honey Brands Distributed in Tehran City, Iran. Iranian Journal of Veterinary Medicine, 18(2), 243-252. [DOI:10.32598/IJVM.18.2.1005348] Mohammad, Khan, U. A., Warsi, M. H., Alkreathy, H. M., Karim, S., & Jain, G. K., et al. (2023). Intranasal cerium oxide nanoparticles improve locomotor activity and reduces oxidative stress and neuroinflammation in haloperidol-induced parkinsonism in rats. Frontiers in Pharmacology, 14, [DOI:10.3389/fphar.2023.1188470] [PMID] Mukherjee, A., Ashrafi, A. M., Bytesnikova, Z., Svec, P., Richtera, L., & Adam, V. (2023). An investigation on the multiple Roles of Ceo2 nanoparticle in electrochemical sensing: Biomimetic activity and electron acceptor. Journal of Electroanalytical Chemistry, 935, [DOI:10.1016/j.jelechem.2023.117301] Naiel, M. A., Abdel-Latif, H. M., Abd El-Hack, M. E., Khafaga, A. F., Elnesr, S. S., & Dawood, M. A., et al. (2022). The applications of cerium oxide nanoform and its ecotoxicity in the aquatic environment: an updated insight. Aquatic Living Resources, 35, [DOI:10.1051/alr/2022008] Nelson, B. C., Johnson, M. E., Walker, M. L., Riley, K. R., & Sims, C. M. (2016). Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants, 5(2), 15. [DOI:10.3390/antiox5020015] [PMID] Nyoka, M., Choonara, Y. E., Kumar, P., Kondiah, P. P., & Pillay, V. (2020). Synthesis of cerium oxide nanoparticles using various methods: Implications for biomedical applications. Nanomaterials (Basel, Switzerland), 10(2), 242. [DOI:10.3390/nano10020242] [PMID] Oró, , Yudina, T., Fernández-Varo, G., Casals, E., Reichenbach, V., & Casals, G., et al. (2016). Cerium oxide nanoparticles reduce steatosis, portal hypertension and display anti-inflammatory properties in rats with liver fibrosis. Journal of Hepatology, 64(3), 691-698. [DOI:10.1016/j.jhep.2015.10.020] [PMID] Pagliari, F., Mandoli, C., Forte, G., Magnani, E., Pagliari, S., & Nardone, G., et al. (2012). Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS nano, 6(5), 3767–3775.[DOI:10.1021/nn2048069] [PMID] Peidaei, F., Ahari, H., Anvar, A., & Ataei, M. (2021). Nanotechnology in Food Packaging and Storage: A Re Iranian Journal of Veterinary Medicine, 15(2), 122-154. [Link] Perez, J. M., Asati, A., Nath, S., & Kaittanis, C. (2008). Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small (Weinheim an der Bergstrasse, Germany), 4(5), 552–556. [DOI:10.1002/smll.200700824] [PMID] Pulido-Reyes, G., Das, S., Leganés, F., Silva, S. O., Wu, S., & Self, W., et al. (2016). Hypochlorite scavenging activity of cerium oxide nanoparticles. RSC Advances, 6(67), 62911-62915. [Link] Rajeshkumar, S., & Naik, P. (2017). Synthesis and biomedical applications of cerium oxide nanoparticles-a review. Biotechnology Reports, 17, 1-5. [DOI:10.1016/j.btre.2017.11.008] [PMID] Ramachandran, M., Subadevi, R., & Sivakumar, M. (2018). Role of pH on synthesis and characterization of cerium oxide (CeO2) nano particles by modified co-precipitation method. Vacuum, 161, 220-224. [DOI:10.1016/j.vacuum.2018.12.002] Ranjbar, A., Soleimani Asl, S., Firozian, F., Heidary Dartoti, H., Seyedabadi, S., & Taheri Azandariani, M., et al. (2018). Role of cerium oxide nanoparticles in a paraquat-induced model of oxidative stress: emergence of neuroprotective results in the brain. Journal of Molecular Neuroscience, 66(3), 420–427.[DOI:10.1007/s12031-018-1191-2] [PMID] Rubio, L., Annangi, B., Vila, L., Hernández, A., & Marcos, R. (2016). Antioxidant and anti-genotoxic properties of cerium oxide nanoparticles in a pulmonary-like cell system. Archives of Toxicology, 90, 269-278. [DOI:10.1007/s00204-015-1468-y] [PMID] Rzigalinski, BA., Bailey, D., Chow, L., Kuiry, S., Patil, S., Merchant, S., et al. (2003). Cerium oxide nanoparticles increase the lifespan of cultured brain cells and protect against free radical and mechanical trauma. Faseb Journal, 17(4), A606. [Link] Sack, M., Alili, L., Karaman, E., Das, S., Gupta, A., & Seal, S., et al. (2014). Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles-a novel aspect in cancer therapy. Molecular Cancer Therapeutics, 13(7), 1740–174 [DOI:10.1158/1535-7163.MCT-13-0950] [PMID] Saifi, M. A., Seal, S., & Godugu, C. (2021). Nanoceria, the versatile nanoparticles: Promising biomedical applications. Journal of Controlled Release, 338, 164-189. [DOI:10.1016/j.jconrel.2021.08.033] [PMID] Schieber, M., & Chandel, N.S. (2014). ROS function in redox signaling and oxidative stress. Current Biology, 24(10), R453-R462. [DOI:10.1016/j.cub.2014.03.034] [PMID] Sharmila, G., Muthukumaran, C., Saraswathi, H., Sangeetha, E., Soundarya, S., & Kumar, N. M. (2019). Green synthesis, characterization and biological activities of nanoceria. Ceramics International, 45(9), 12382-12386. [DOI:10.1016/j.ceramint.2019.03.164] Singh, K. R., Nayak, V., Sarkar, T., & Singh, R. P. (2020). Cerium oxide nanoparticles: Properties, biosynthesis and biomedical application. RSC Advances, 10(45), 27194–27214. [DOI:10.1039/D0RA04736H] [PMID] Tang, J. L., Moonshi, S. S., & Ta, H. T. (2023). Nanoceria: An innovative strategy for cancer treatment. Cellular and Molecular Life Sciences: CMLS, 80(2), 46. [DOI:10.1007/s00018-023-04694-y] [PMID] Thakur, N., Manna, P., & Das, J. (2019). Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. Journal of Nanobiotechnology, 17(1), 84. [DOI:10.1186/s12951-019-0516-9] [PMID] Ting, S. R., Whitelock, J. M., Tomic, R., Gunawan, C., Teoh, W. Y., & Amal, R., et al. (2013). Cellular uptake and activity of heparin functionalised cerium oxide nanoparticles in monocytes. Biomaterials, 34(17), 4377-4386. [DOI:10.1016/j.biomaterials.2013.02.042] [PMID] Tisi, A., Pulcini, F., Carozza, G., Mattei, V., Flati, V., & Passacantando, M., et al. (2022). Antioxidant properties of cerium oxide nanoparticles prevent retinal neovascular alterations in vitro and in vivo. Antioxidants, 11(6), 1133. [DOI:10.3390/antiox11061133] [PMID] Tok, A. I. Y., Boey, F. Y.C., Dong, Z., & Sun, X. L. (2007). Hydrothermal synthesis of CeO2 nano-particles. Journal of Materials Processing Technology, 190(1-3), 217-222. [DOI:10.1016/j.jmatprotec.2007.02.042] Wei, F., Neal, C. J., Sakthivel, T. S., Kean, T., Seal, S., & Coathup, M. J. (2021). Multi-functional cerium oxide nanoparticles regulate inflammation and enhance osteogenesis. Materials Science and Engineering: C, 124, [DOI:10.1016/j.msec.2021.112041] Xiong, L., Bao, H., Li, S., Gu, D., Li, Y., & Yin, Q., et al. (2023). Cerium oxide nanoparticles protect against chondrocytes and cartilage explants from oxidative stress via Nrf2/HO-1 pathway in temporomandibular joint osteoarthritis. Frontiers in Bioengineering and Biotechnology, 11, [DOI:10.3389/fbioe.2023.1076240] [PMID] Yang, W., Zhang, M., He, J., Gong, M., Sun, J., & Yang, X. (2022). Central nervous system injury meets nanoceria: opportunities and challenges. Regenerative Biomaterials, 9, [DOI:10.1093/rb/rbac037] [PMID] Yesil, S., Ozdemir, C., Arslan, M., Gundogdu, A. C., Kavutcu, M., & Atan, A. (2023). Protective effect of cerium oxide on testicular function and oxidative stress after torsion/detorsion in adult male rats. Experimental and Therapeutic Medicine, 25(1), 1. [DOI:10.3892/etm.2022.11700] [PMID] Zavvari, F., Nahavandi, A., & Shahbazi, A. (2020). Neuroprotective effects of cerium oxide nanoparticles on experimental stress-induced depression in male rats. Journal of Chemical Neuroanatomy, 106, [DOI:10.1016/j.jchemneu.2020.101799] [PMID] Zhang, Y., Kohler, N., & Zhang, M. (2002). Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23(7), 1553–1561. [DOI:10.1016/S0142-9612(01)00267-8] [PMID] | ||
مراجع | ||
Abuid, N. J., Gattás-Asfura, K. M., LaShoto, D. J., Poulos, A. M., & Stabler, C. L. (2020). Biomedical applications of cerium oxide nanoparticles: A potent redox modulator and drug delivery agent. Nanoparticles for Biomedical Applications, 220, 283-301. [DOI:10.1016/B978-0-12-816662-8.00017-5] Alpaslan, E., Geilich, B. M., Yazici, H., & Webster, T. J. (2017). PH-Controlled Cerium Oxide Nanoparticle Inhibition of Both Gram-Positive and Gram-Negative Bacteria Growth. Scientific Reports, 7, [DOI:10.1038/srep45859] [PMID] Anvar, S. A. A., Nowruzi, B. and Afshari, G. (2023). A review of the application of nanoparticles biosynthesized by microalgae and cyanobacteria in medical and veterinary sciences. Iranian Journal of Veterinary Medicine, 17(1), 1-18. [DOI:10.32598/IJVM.17.1.1005309] Aplak, E., von Montfort, C., Haasler, L., Stucki, D., Steckel, B., & Reichert, A. S., et al. (2020). CNP mediated selective toxicity on melanoma cells is accompanied by mitochondrial dysfunction. Plos One, 15(1), e0227926. [DOI:10.1371/journal.pone.0227926] [PMID] Battaglini, M., Tapeinos, C., Cavaliere, I., Marino, A., Ancona, A., & Garino, N., et al. (2019). Design, fabrication, and in vitro evaluation of nanoceria-loaded nanostructured lipid carriers for the treatment of neurological diseases. ACS biomaterials science & engineering, 5(2), 670–682.[DOI:10.1021/acsbiomaterials.8b01033] [PMID] Corsi, F., Deidda Tarquini, G., Urbani, M., Bejarano, I., Traversa, E., & Ghibelli, L. (2023). The impressive anti-inflammatory activity of cerium oxide nanoparticles: More than Redox?. Nanomaterials (Basel, Switzerland), 13(20), 2803. [DOI:10.3390/nano13202803] [PMID] De Marzi, L., Monaco, A., De Lapuente, J., Ramos, D., Borras, M., & Di Gioacchino, M., et al. (2013). Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro. International Journal of Molecular Sciences, 14(2), 3065-3077. [DOI:10.3390/ijms14023065] [PMID] Dhall, A., Self, W. (2018). Cerium oxide nanoparticles: A brief review of their synthesis methods and biomedical applications. Antioxidants (Basel, Switzerland), 7(8), 97. [DOI:10.3390/antiox7080097] [PMID] Dowding, J., Dosani, T., Kumar, A., Seal, S., & Self, W. T. (2012). Cerium oxide nanoparticles scavenge nitric oxide radical (˙ NO). Chemical Communications, 48(40), 4896-4898. [DOI:10.1039/c2cc30485f] [PMID] Eitan, E., Hutchison, E. R., Greig, N. H., Tweedie, D., Celik, H., & Ghosh, S., et al. (2015). Combination therapy with lenalidomide and nanoceria ameliorates CNS autoimmunity. Experimental Neurology, 273, 151-160. [DOI:10.1016/j.expneurol.2015.08.008] [PMID] Estevez, A. Y., Ganesana, M., Trentini, J. F., Olson, J. E., Li, G., & Boateng, Y. O., et al. (2019). Antioxidant enzyme-mimetic activity and neuroprotective effects of cerium oxide nanoparticles stabilized with various ratios of citric acid and EDTA. Biomolecules, 9(10), 562. [DOI:10.3390/biom9100562] [PMID] Estevez, A. Y., Pritchard, S., Harper, K., Aston, J. W., Lynch, A., & Lucky, J. J., et al. (2011). Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radical Biology and Medicine, 51(6), 1155-1163. [DOI:10.1016/j.freeradbiomed.2011.06.006] [PMID] Giri, S., Karakoti, A., Graham, R. P., Maguire, J. L., Reilly, C. M., & Seal, S., et (2013). Nanoceria: A rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer. Plos One, 8(1), e54578. [DOI:10.1371/journal.pone.0054578] [PMID] Hirst, S. M., Karakoti, A. S., Tyler, R. D., Sriranganathan, N., Seal, S., & Reilly, C. M. (2009). Anti-inflammatory properties of cerium oxide nanoparticles. Small (Weinheim an der Bergstrasse, Germany), 5(24), 2848–2856. [DOI:10.1002/smll.200901048] [PMID] Hosseini, M., & Mozafari, M. (2020). Cerium oxide nanoparticles: Recent advances in tissue engineering. Materials (Basel, Switzerland), 13(14), 3072. [DOI:10.3390/ma13143072] [PMID] Hossieni, M., Kiani, S. J., Tavakoli, A., Kachooei, A., Habib, Z., & Monavari, S. H. (2024). In vitro inhibition of rotavirus multiplication by copper oxide nanoparticles. Archives of Razi Institute, 79(1), 83-91 [DOI:10.32592/ARI.2024.79.1.83] [PMID] Hussain AlDulaimi, L. (2024). Effect of Oxidative Stress on Histological and Immunohistochemical Changes in Testes of Albino Mice. Iranian Journal of Veterinary Medicine, 18(2), 187-194. [DOI:10.32598/IJVM.18.2.1005459] Karimi, B., Ashrafi, M., Shomali, T., & Yektaseresht, A. (2019). Therapeutic effect of simvastatin on DMBA-induced breast cancer in mice. Fundamental & Clinical Pharmacology, 33(1), 84-93. [DOI:10.1111/fcp.12397] [PMID] Kalashnikova, I., Chung, S. J., Nafiujjaman, M., Hill, M. L., Siziba, M. E., & Contag, C. H., et al. (2020). Ceria-based nanotheranostic agent for rheumatoid arthritis. Theranostics, 10(26), 11863–11880. [DOI:10.7150/t49069] [PMID] Kannan, S. K., & Sundrarajan, A. M. (2014). A Green Approach for the Synthesis of a Cerium Oxide Nanoparticle: Characterization and Antibacterial Activity. International Journal of Nanoscience, 13(3), 1450018 [DOI:10.1142/S0219581X14500185] Karakoti, A. S., Munusamy, P., Hostetler, K., Kodali, V., Kuchibhatla, S., & Orr, G., et al. (2012). Preparation and characterization challenges to understanding environmental and biological impacts of ceria nanoparticles. Surface and Interface Analysis, 44(5),882–889. [DOI:10.1002/sia.5006] [PMID] Karimi, B., Mardani, M., Kaboutari, J., Javdani, M., Albadi, J., & Shirian, S. (2024). Green synthesis of copper oxide nanoparticles using Artemisia annua aqueous extract and its characterization, antioxidant, and burn wound healing activities. Chemical Papers, 78(1), 231-243. [DOI:10.1007/s11696-023-03069-8] Kumari, M., Singh, S. P., Chinde, S., Rahman, M. F., Mahboob, M., & Grover, P. (2014). Toxicity study of cerium oxide nanoparticles in human neuroblastoma cells. International Journal of Toxicology, 33(2), 86-97. [DOI:10.1177/1091581814522305] [PMID] Kwon, H. J., Cha, M. Y., Kim, D., Kim, D. K., Soh, M., & Shin, K., et al. (2016). Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer›s disease. ACS Nano, 10(2), 2860–2870. [DOI:10.1021/acsnano.5b08045] [PMID] Lin, Y. W., Fang, H., Meng, F. Q., Ke, C. J., & Lin, F. H. (2020).Hyaluronic acid loaded with cerium oxide nanoparticles as antioxidant in hydrogen peroxide induced chondrocytes injury: An in vitro osteoarthritis model. Molecules, 25(19), 4407. [DOI:10.3390/molecules25194407] [PMID] López, J. M., Gilbank A. L., García T., Solsona B., Agouram S., & Torrente-Murciano L. (2015). The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Applied Catalysis B: Environmental, 174-175, 403-412. [DOI:10.1016/j.apcatb.2015.03.017] Lu, M., Zhang, Y., Wang, Y., Jiang, M., & Yao, X. (2016). Insight into several factors that affect the conversion between antioxidant and oxidant activities of nanoceria. ACS Applied Materials & Interfaces, 8(36), 23580–23590. [DOI:10.1021/acsami.6b08219] [PMID] Ma, Y., Gao, W., Zhang, Z., Zhang, S., Tian, Z., & Liu, Y., et al. (2018). Regulating the surface of nanoceria and its applications in heterogeneous catalysis. Surface Science Reports, 73(1), 1e36. [DOI:10.1016/j.surfrep.2018.02.001] Machhi, J., Yeapuri, P., Markovic, M., Patel, M., Yan, W., & Lu, Y., et al. (2022). Europium-doped cerium oxide nanoparticles for microglial amyloid beta clearance and homeostasis. ACS Chemical Neuroscience, 13(8), 1232-1244. [DOI:10.1021/acschemneuro.1c00847] [PMID] Masui, T., Hirai, H., Imanaka, N., Adachi, G., Sakata, T., & Mori, H. (2002). Synthesis of cerium oxide nanoparticles by hydrothermal crystallization with citric acid. Journal of Materials Science Letters, 21, 489-491. [DOI:10.1023/A:1015342925372] Miakhil, A., Kamkar, A., & Banuree, S. A. H. (2024). Physicochemical Properties and Antioxidant Activity of Honey Brands Distributed in Tehran City, Iran. Iranian Journal of Veterinary Medicine, 18(2), 243-252. [DOI:10.32598/IJVM.18.2.1005348] Mohammad, Khan, U. A., Warsi, M. H., Alkreathy, H. M., Karim, S., & Jain, G. K., et al. (2023). Intranasal cerium oxide nanoparticles improve locomotor activity and reduces oxidative stress and neuroinflammation in haloperidol-induced parkinsonism in rats. Frontiers in Pharmacology, 14, [DOI:10.3389/fphar.2023.1188470] [PMID] Mukherjee, A., Ashrafi, A. M., Bytesnikova, Z., Svec, P., Richtera, L., & Adam, V. (2023). An investigation on the multiple Roles of Ceo2 nanoparticle in electrochemical sensing: Biomimetic activity and electron acceptor. Journal of Electroanalytical Chemistry, 935, [DOI:10.1016/j.jelechem.2023.117301] Naiel, M. A., Abdel-Latif, H. M., Abd El-Hack, M. E., Khafaga, A. F., Elnesr, S. S., & Dawood, M. A., et al. (2022). The applications of cerium oxide nanoform and its ecotoxicity in the aquatic environment: an updated insight. Aquatic Living Resources, 35, [DOI:10.1051/alr/2022008] Nelson, B. C., Johnson, M. E., Walker, M. L., Riley, K. R., & Sims, C. M. (2016). Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants, 5(2), 15. [DOI:10.3390/antiox5020015] [PMID] Nyoka, M., Choonara, Y. E., Kumar, P., Kondiah, P. P., & Pillay, V. (2020). Synthesis of cerium oxide nanoparticles using various methods: Implications for biomedical applications. Nanomaterials (Basel, Switzerland), 10(2), 242. [DOI:10.3390/nano10020242] [PMID] Oró, , Yudina, T., Fernández-Varo, G., Casals, E., Reichenbach, V., & Casals, G., et al. (2016). Cerium oxide nanoparticles reduce steatosis, portal hypertension and display anti-inflammatory properties in rats with liver fibrosis. Journal of Hepatology, 64(3), 691-698. [DOI:10.1016/j.jhep.2015.10.020] [PMID] Pagliari, F., Mandoli, C., Forte, G., Magnani, E., Pagliari, S., & Nardone, G., et al. (2012). Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS nano, 6(5), 3767–3775.[DOI:10.1021/nn2048069] [PMID] Peidaei, F., Ahari, H., Anvar, A., & Ataei, M. (2021). Nanotechnology in Food Packaging and Storage: A Re Iranian Journal of Veterinary Medicine, 15(2), 122-154. [Link] Perez, J. M., Asati, A., Nath, S., & Kaittanis, C. (2008). Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small (Weinheim an der Bergstrasse, Germany), 4(5), 552–556. [DOI:10.1002/smll.200700824] [PMID] Pulido-Reyes, G., Das, S., Leganés, F., Silva, S. O., Wu, S., & Self, W., et al. (2016). Hypochlorite scavenging activity of cerium oxide nanoparticles. RSC Advances, 6(67), 62911-62915. [Link] Rajeshkumar, S., & Naik, P. (2017). Synthesis and biomedical applications of cerium oxide nanoparticles-a review. Biotechnology Reports, 17, 1-5. [DOI:10.1016/j.btre.2017.11.008] [PMID] Ramachandran, M., Subadevi, R., & Sivakumar, M. (2018). Role of pH on synthesis and characterization of cerium oxide (CeO2) nano particles by modified co-precipitation method. Vacuum, 161, 220-224. [DOI:10.1016/j.vacuum.2018.12.002] Ranjbar, A., Soleimani Asl, S., Firozian, F., Heidary Dartoti, H., Seyedabadi, S., & Taheri Azandariani, M., et al. (2018). Role of cerium oxide nanoparticles in a paraquat-induced model of oxidative stress: emergence of neuroprotective results in the brain. Journal of Molecular Neuroscience, 66(3), 420–427.[DOI:10.1007/s12031-018-1191-2] [PMID] Rubio, L., Annangi, B., Vila, L., Hernández, A., & Marcos, R. (2016). Antioxidant and anti-genotoxic properties of cerium oxide nanoparticles in a pulmonary-like cell system. Archives of Toxicology, 90, 269-278. [DOI:10.1007/s00204-015-1468-y] [PMID] Rzigalinski, BA., Bailey, D., Chow, L., Kuiry, S., Patil, S., Merchant, S., et al. (2003). Cerium oxide nanoparticles increase the lifespan of cultured brain cells and protect against free radical and mechanical trauma. Faseb Journal, 17(4), A606. [Link] Sack, M., Alili, L., Karaman, E., Das, S., Gupta, A., & Seal, S., et al. (2014). Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles-a novel aspect in cancer therapy. Molecular Cancer Therapeutics, 13(7), 1740–174 [DOI:10.1158/1535-7163.MCT-13-0950] [PMID] Saifi, M. A., Seal, S., & Godugu, C. (2021). Nanoceria, the versatile nanoparticles: Promising biomedical applications. Journal of Controlled Release, 338, 164-189. [DOI:10.1016/j.jconrel.2021.08.033] [PMID] Schieber, M., & Chandel, N.S. (2014). ROS function in redox signaling and oxidative stress. Current Biology, 24(10), R453-R462. [DOI:10.1016/j.cub.2014.03.034] [PMID] Sharmila, G., Muthukumaran, C., Saraswathi, H., Sangeetha, E., Soundarya, S., & Kumar, N. M. (2019). Green synthesis, characterization and biological activities of nanoceria. Ceramics International, 45(9), 12382-12386. [DOI:10.1016/j.ceramint.2019.03.164] Singh, K. R., Nayak, V., Sarkar, T., & Singh, R. P. (2020). Cerium oxide nanoparticles: Properties, biosynthesis and biomedical application. RSC Advances, 10(45), 27194–27214. [DOI:10.1039/D0RA04736H] [PMID] Tang, J. L., Moonshi, S. S., & Ta, H. T. (2023). Nanoceria: An innovative strategy for cancer treatment. Cellular and Molecular Life Sciences: CMLS, 80(2), 46. [DOI:10.1007/s00018-023-04694-y] [PMID] Thakur, N., Manna, P., & Das, J. (2019). Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. Journal of Nanobiotechnology, 17(1), 84. [DOI:10.1186/s12951-019-0516-9] [PMID] Ting, S. R., Whitelock, J. M., Tomic, R., Gunawan, C., Teoh, W. Y., & Amal, R., et al. (2013). Cellular uptake and activity of heparin functionalised cerium oxide nanoparticles in monocytes. Biomaterials, 34(17), 4377-4386. [DOI:10.1016/j.biomaterials.2013.02.042] [PMID] Tisi, A., Pulcini, F., Carozza, G., Mattei, V., Flati, V., & Passacantando, M., et al. (2022). Antioxidant properties of cerium oxide nanoparticles prevent retinal neovascular alterations in vitro and in vivo. Antioxidants, 11(6), 1133. [DOI:10.3390/antiox11061133] [PMID] Tok, A. I. Y., Boey, F. Y.C., Dong, Z., & Sun, X. L. (2007). Hydrothermal synthesis of CeO2 nano-particles. Journal of Materials Processing Technology, 190(1-3), 217-222. [DOI:10.1016/j.jmatprotec.2007.02.042] Wei, F., Neal, C. J., Sakthivel, T. S., Kean, T., Seal, S., & Coathup, M. J. (2021). Multi-functional cerium oxide nanoparticles regulate inflammation and enhance osteogenesis. Materials Science and Engineering: C, 124, [DOI:10.1016/j.msec.2021.112041] Xiong, L., Bao, H., Li, S., Gu, D., Li, Y., & Yin, Q., et al. (2023). Cerium oxide nanoparticles protect against chondrocytes and cartilage explants from oxidative stress via Nrf2/HO-1 pathway in temporomandibular joint osteoarthritis. Frontiers in Bioengineering and Biotechnology, 11, [DOI:10.3389/fbioe.2023.1076240] [PMID] Yang, W., Zhang, M., He, J., Gong, M., Sun, J., & Yang, X. (2022). Central nervous system injury meets nanoceria: opportunities and challenges. Regenerative Biomaterials, 9, [DOI:10.1093/rb/rbac037] [PMID] Yesil, S., Ozdemir, C., Arslan, M., Gundogdu, A. C., Kavutcu, M., & Atan, A. (2023). Protective effect of cerium oxide on testicular function and oxidative stress after torsion/detorsion in adult male rats. Experimental and Therapeutic Medicine, 25(1), 1. [DOI:10.3892/etm.2022.11700] [PMID] Zavvari, F., Nahavandi, A., & Shahbazi, A. (2020). Neuroprotective effects of cerium oxide nanoparticles on experimental stress-induced depression in male rats. Journal of Chemical Neuroanatomy, 106, [DOI:10.1016/j.jchemneu.2020.101799] [PMID] Zhang, Y., Kohler, N., & Zhang, M. (2002). Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23(7), 1553–1561. [DOI:10.1016/S0142-9612(01)00267-8] [PMID]
| ||
آمار تعداد مشاهده مقاله: 541 تعداد دریافت فایل اصل مقاله: 515 |