تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,111,861 |
تعداد دریافت فایل اصل مقاله | 97,215,481 |
Numerical investigation on unsteady compressible flow of viscous fluid with convection under the effect of Joule heating | ||
Journal of Computational Applied Mechanics | ||
مقاله 7، دوره 55، شماره 3، مهر 2024، صفحه 423-439 اصل مقاله (1.43 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jcamech.2024.376625.1096 | ||
نویسندگان | ||
Saira Zafar1؛ Ambreen A Khan1؛ Sadiq M Sait2، 3؛ R Ellahi* 1، 4 | ||
1Department of Mathematics & Statistics, International Islamic University, Islamabad-4400, Pakistan | ||
2Department of Computer Engineering, King Fahd University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia | ||
3Interdisciplinary Research Center for Smart Mobility and Logistics, King Fahd University of Petroleum & Minerals, Dhahran-3126, Saudi Arabia | ||
4Center for Modeling & Computer Simulation, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia | ||
چکیده | ||
The study of compressible flow plays a fundamental role in the design of heat exchangers at high temperature and pressure. Compressible flow is used to design the aerodynamic structure, engines, and high-speed vehicles. In view of these utilities, this paper is deliberated to acquire the analysis of the unsteady compressible flow of a viscous fluid through an inclined asymmetric channel with thermal effects. Special attention is paid to convective heat transfer with impact of viscous dissipation, source/sink, and joule heating effects. In addition, thermal flow is analyzed through slip boundary conditions. The current problem is modeled through the laws of energy, momentum, and mass with the help of a fluid’s response towards compression. As a result, the coupled nonlinear partial differential equations are obtained, which are investigated through a well-known numerical approach, the explicit finite difference method. The study examines impact of several parameters on the flow rate, velocity, and temperature with the help of graphical representations. The behavior of flow rate is intended to change with time. | ||
کلیدواژهها | ||
Compressible flow؛ Convective heat transfer؛ Joule heating؛ Source؛ Sink؛ Finite difference method | ||
مراجع | ||
[1] T. W. Latham, Fluid motions in a peristaltic pump, Thesis, Massachusetts Institute of Technology, 1966.
[2] A. H. Shapiro, M. Y. Jaffrin, S. L. Weinberg, Peristaltic pumping with long wavelengths at low Reynolds number, Journal of Fluid Mechanics, Vol. 37, No. 4, pp. 799-825, 1969.
[3] E. Elshehawey, A. Sobh, E. Elbarbary, Peristaltic Motion of a Generalized Newtonian Fluid Through a Porous Medium, Journal of The Physical Society of Japan - J PHYS SOC JPN, Vol. 69, pp. 401-407, 02/15, 2000.
[4] A. M. Siddiqui, W. H. Schwarz, Peristaltic flow of a second-order fluid in tubes, Journal of Non-Newtonian Fluid Mechanics, Vol. 53, pp. 257-284, 1994/07/01/, 1994.
[5] H. Vaidya, O. Makinde, R. Choudhari, K. Prasad, S. Khan, K. Vajravelu, Peristaltic flow of non-Newtonian fluid through an inclined complaint nonlinear tube: application to chyme transport in the gastrointestinal tract, European Physical Journal Plus, Vol. 135, pp. 934, 11/24, 2020.
[6] T. Hayat, S. Hina, S. Asghar, S. Obaidat, Peristaltic flow of Maxwell fluid in an asymmetric channel with wall properties, Int. J. Phys. Sci., Vol. 7, pp. 2145-2155, 01/01, 2012.
[7] G. I. Taylor, Analysis of the swimming of microscopic organisms, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 209, No. 1099, pp. 447-461, 1951.
[8] O. Eytan, D. Elad, Analysis of intra-uterine fluid motion induced by uterine contractions, Bulletin of Mathematical Biology, Vol. 61, No. 2, pp. 221-238, 1999.
[9] N. Ali, K. Ullah, H. Kazmi, Bifurcation analysis for a two-dimensional peristaltic driven flow of power-law fluid in asymmetric channel, Physics of Fluids, Vol. 32, pp. 073104, 07/01, 2020.
[10] M. Kothandapani, J. Prakash, V. Pushparaj, Nonlinear peristaltic motion of a Johnson–Segalman fluid in a tapered asymmetric channel, Alexandria Engineering Journal, Vol. 55, No. 2, pp. 1607-1618, 2016/06/01/, 2016.
[11] R. Rafaqat, A. A. Khan, Effects of magnetic field and porosity on compressible flow in an asymmetric channel, International Journal of Modern Physics B, Vol. 38, No. 19, pp. 2450246, 2024.
[12] F. H. Harlow, J. E. Welch, Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface, The Physics of Fluids, Vol. 8, No. 12, pp. 2182-2189, 1965.
[13] A. Abbasi, A. Zaman, S. Arooj, M. Ijaz Khan, S. U. Khan, W. Farooq, T. Muhammad, A bioconvection model for viscoelastic nanofluid confined by tapered asymmetric channel: implicit finite difference simulations, J Biol Phys, Vol. 47, No. 4, pp. 499-520, Dec, 2021. eng
[14] T. Hayat, K. Muhammad, S. Momani, Melting heat and viscous dissipation in flow of hybrid nanomaterial: a numerical study via finite difference method, Journal of Thermal Analysis and Calorimetry, pp. 1-9, 2022.
[15] S. Reza-E-Rabbi, S. M. Arifuzzaman, T. Sarkar, M. S. Khan, S. F. Ahmmed, Explicit finite difference analysis of an unsteady MHD flow of a chemically reacting Casson fluid past a stretching sheet with Brownian motion and thermophoresis effects, Journal of King Saud University - Science, Vol. 32, No. 1, pp. 690-701, 2020/01/01/, 2020.
[16] A. R. A. Khaled, K. Vafai, Heat transfer enhancement through control of thermal dispersion effects, International Journal of Heat and Mass Transfer, Vol. 48, No. 11, pp. 2172-2185, 2005/05/01/, 2005.
[17] M. A. Sheremet, M. M. Rashidi, Thermal convection of nano-liquid in an electronic cabinet with finned heat sink and heat generating element, Alexandria Engineering Journal, Vol. 60, No. 3, pp. 2769-2778, 2021/06/01/, 2021.
[18] M. M. Bhatti, A. Zeeshan, N. Ijaz, O. Bég, A. Kadir, Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct, Engineering Science and Technology, an International Journal, Vol. 20, 11/01, 2016.
[19] T. Thumma, S. Mishra, M. A. Abbas, M. M. Bhatti, S. I. Abdelsalam, Three-dimensional nanofluid stirring with non-uniform heat source/sink through an elongated sheet, Applied Mathematics and Computation, Vol. 421, pp. 126927, 2022.
[20] S. Baragh, H. Shokouhmand, S. Mousavi Ajarostaghi, M. Nikian, An experimental investigation on forced convection heat transfer of single phase flow in a channel with different arrangements of porous media, International Journal of Thermal Sciences, Vol. 134, pp. 370-379, 08/23, 2018.
[21] H. Shokouhmand, F. Sangtarash, The effect of flexible tube vibration on pressure drop and heat transfer in heat exchangers considering viscous dissipation effects, Heat and Mass Transfer, Vol. 44, pp. 1435-1445, 01/10, 2008.
[22] N. Ranjit, G. Shit, A. Sinha, Transportation of ionic liquids in a porous micro-channel induced by peristaltic wave with Joule heating and wall-slip conditions, Chemical Engineering Science, Vol. 171, pp. 545-557, 2017.
[23] P. Gholamalipour, M. Siavashi, M. H. Doranehgard, Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu-water nanofluid, International Communications in Heat and Mass Transfer, Vol. 109, pp. 104367, 2019/12/01/, 2019.
[24] M. Turkyilmazoglu, An analytical treatment for the exact solutions of MHD flow and heat over two–three dimensional deforming bodies, International Journal of Heat and Mass Transfer, Vol. 90, pp. 781-789, 2015/11/01/, 2015.
[25] L. Zhang, M. M. Bhatti, M. Marin, K. S. Mekheimer, Entropy Analysis on the Blood Flow through Anisotropically Tapered Arteries Filled with Magnetic Zinc-Oxide (ZnO) Nanoparticles, Entropy, Vol. 22, No. 10, pp. 1070, 2020.
[26] N. Gibanov, M. Sheremet, H. Öztop, K. Al-Salem, MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid, Journal of Magnetism and Magnetic Materials, Vol. 452, 12/01, 2017.
[27] A. Aarts, G. Ooms, Net flow of compressible viscous liquids induced by travelling waves in porous media, Journal of engineering mathematics, Vol. 34, pp. 435-450, 1998.
[28] K. Mekheimer, S. Komy, S. Abdelsalam, Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel, Chinese Physics B, Vol. 22, pp. 124702, 12/01, 2013. | ||
آمار تعداد مشاهده مقاله: 282 تعداد دریافت فایل اصل مقاله: 436 |