تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,107,711 |
تعداد دریافت فایل اصل مقاله | 97,212,479 |
Pichia pastoris an Ideal Host for the Production of Recombinant Influenza Vaccines | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 1، دوره 18، شماره 4، دی 2024، صفحه 465-478 اصل مقاله (2.08 M) | ||
نوع مقاله: Review article | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.18.4.1005523 | ||
نویسندگان | ||
Amir Asghari Baghkheirati1؛ Mohammad Hadi Sekhavati2؛ Seyed Mostafa Peighambari1؛ Kiarash Ghazvini3؛ Jamshid Razmyar* 1 | ||
1Department of Avian Health and Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
2Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran. | ||
3Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. | ||
چکیده | ||
Pichia pastoris is a methylotrophic yeast with remarkable characteristics such as lacking endotoxin, producing high amounts of recombinant protein, performing post-translational modifications, and so on. Influenza A virus, a member of the Orthomyxoviridae family, is the cause of avian influenza. Three avian influenza virus subtypes, H5, H7 and H9, are commercially and physiologically significant in the poultry industry. Some researchers considered influenza to be the next pandemic disease. Nowadays, researchers have paid attention to producing novel and effective recombinant vaccines, especially in the poultry industry. Due to the advantages of P. pastoris yeast, it can be used as an ideal expression system for producing subunit vaccines. Although several studies have been conducted in this field, there is no comprehensive review of using P. pastoris to produce recombinant influenza vaccines. This review explains the different strains, phenotypes, and advantages of this yeast and then the production of recombinant influenza vaccines using this expression system is discussed in detail. | ||
کلیدواژهها | ||
Influenza؛ Pichia pastoris؛ Recombinant؛ Vaccine؛ Veterinary medicine | ||
عنوان مقاله [English] | ||
پیکیا پاستوریس یک میزبان ایدئآل برای تولید واکسنهای نوترکیب آنفلوانزا | ||
نویسندگان [English] | ||
امیر اصغری باغخیراتی1؛ محمد هادی سخاوتی2؛ سید مصطفی پیغمبری1؛ کیارش قزوینی3؛ جمشید رزم یار1 | ||
1گروه بهداشت و بیماری های پرندگان، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران. | ||
2گروه علوم دامی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران. | ||
3گروه میکروبیولوژی و ویروس شناسی، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران. | ||
چکیده [English] | ||
پیکیا پاستوریس یک مخمر متیلوتروف با ویژگیهای قابلتوجهی مانند نداشتن اندوتوکسین، تولید مقادیر بالای پروتئین نوترکیب، انجام تغییرات پس از ترجمه و غیره است. ویروس آنفلوانزای A، یکی از اعضای خانواده اورتومیکسوویریده است که عامل آنفلوانزای پرندگان میباشد. سه تحت تیپ H5، H7 و H9 ویروس آنفلوانزای پرندگان ازنظر تجاری و فیزیولوژیکی در صنعت طیور دارای اهمیت هستند. برخی از محققان، آنفلوانزای را بیماری همهگیر بعدی میدانند. امروزه توجه محققان به تولید واکسنهای نوترکیب جدید و مؤثر بهویژه در صنعت طیور معطوف شده است. باتوجهبه مزایای مخمر پیکیا پاستوریس میتوان از آن بهعنوان یک سیستم بیانی ایدئآل برای تولید واکسنهای زیر واحد استفاده کرد. اگرچه مطالعات متعددی در این زمینه انجام شده است، اما مطالعه مروری جامعی درمورد استفاده از پیکیا پاستوریس برای تولید واکسنهای نوترکیب آنفلوانزای وجود ندارد. در این مطالعه مروری، سویهها، فنوتیپها و مزایای مختلف این مخمر توضیح داده شد و سپس درمورد تولید واکسنهای نوترکیب آنفلوانزای با استفاده از این سیستم بیانی بهطور خاص بحث شده است. | ||
کلیدواژهها [English] | ||
آنفلوانزای, پیکیا پاستوریس, نوترکیب, واکسن, دامپزشکی | ||
اصل مقاله | ||
Introduction
P. pastoris is an ideal host for influenza vaccine production that can overcome the drawbacks of inactive vaccines (Barone et al., 2023). In addition to having characteristics similar to mammalian cells, P. pastoris can be easily manipulated genetically, making the production of recombinant proteins in this yeast system economically viable (Wu et al., 2023). In addition, this yeast can rapidly express proteins and their translational and post-translational processing (Li et al., 2007). These factors have made this yeast a promising organism in producing eukaryotic proteins. Also, it is possible to achieve high cell density by using a bioreactor. Besides, P. pastoris has a special secretion system, so it secretes a very small amount of its intrinsic proteins into the culture medium; therefore, the cost of protein purification and subsequent processing is reduced. P. pastoris can form disulfide bonds and O- and N-linked glycosylation (Kuruti et al., 2020). This yeast does not cause hyperglycosylation of glycoproteins because it only adds short oligosaccharide chains to proteins. Recently, a lot of research has been done on this yeast to engineer its genome in a way that makes it more suitable for the production of recombinant proteins at high cell density (Tanaka et al., 2012; Kuruti et al., 2020; Zhang et al., 2020).
Abtin, A., Shoushtari, A., Pourbakhsh, S. A., Fallah Mehrabadi, M. H., & Pourtaghi, H. (2022). Two novel avian influenza virus subtypes isolated from domestic Ducks in North of Iran. Archives of Razi Institute, 77(2), 861–867. [PMID] Abubakar, M. B., Aini, I., Omar, A. R., & Hair-Bejo, M. (2011). Cloning and expression of highly pathogenic avian influenza virus full-length nonstructural gene in Pichia pastoris. Journal of Biomedicine & Biotechnology, 2011, [DOI:10.1155/2011/414198] [PMID] [PMCID] Alizadeh, E., Kheiri, M. T., Bashar, R., Tabatabaeian, M., Hosseini, S. M., & Mazaheri, V. (2009). Avian Influenza (H9N2) among poultry workers in Iran. Iranian Journal of Microbiology, 1(3), 3-6. [Link] Alizadeh, J., Ranjbar, R., Kamali, M., Farhadi, N., Davari, A., & Sadeghifard, N. (2013). Cloning of Vibrio cholerae outer membrane protein W in Pichia pastoris. Iranian Journal of Microbiology, 5(3), 252-258. [PMID] Asghari Baghkheirati, A., Sekhavati, M. H., Peighambari, S. M., Ghazvini, K., & Razmyar, J. (2023). Serological evaluation of H9-RBD-Pichia, a novel recombinant influenza vaccine, in BALB/c mice. Iranian Journal of Veterinary Medicine. [Link] Athmaram, T. N., Saraswat, S., Santhosh, S. R., Singh, A. K., Suryanarayana, W. S., & Priya, R., et al. (2011). Yeast expressed recombinant Hemagglutinin protein of novel H1N1 elicits neutralising antibodies in rabbits and mice. Virology Journal, 8, [PMID] [PMCID] Azghandi, M., Tahmoorespur, M., & Sekhavati, M. H. (2022). [Comparison of antiviral effect of camel lactoferrin peptide (CLF36) and new generation drugs against hepatitis C virus (Persian)]. Agricultural Biotechnology Journal, 14(2), 21-44. [Link] Barone, G. D., Emmerstorfer-Augustin, A., Biundo, A., Pisano, I., Coccetti, P., & Mapelli, V., et al. (2023). Industrial production of proteins with Pichia pastoris-Komagataella phaffii. Biomolecules, 13(3), 441. [PMID] [PMCID] Becerril-García, M. Á., Flores-Maldonado, O. E., González, G. M., García-González, G., Hernández-Bello, R., & Palma-Nicolás, J. P. (2022). Safety profile of intravenous administration of live Pichia pastoris cells in mice. FEMS Yeast Research, 22(1), foac023. [PMID] Cámara, E., Landes, N., Albiol, J., Gasser, B., Mattanovich, D., & Ferrer, P. (2017). Increased dosage of AOX1 promoter-regulated expression cassettes leads to transcription attenuation of the methanol metabolism in Pichia pastoris. Scientific Reports, 7, [PMID] [PMCID] Daneshmand, A., Kermanshahi, H., Mohammed, J., Sekhavati, M. H., Javadmanesh, A., & Ahmadian, M., et al. (2022). Intestinal changes and immune responses during Clostridium perfringens-induced necrotic enteritis in broiler chickens. Poultry Science, 101(3), 101652. [DOI:10.1016/j.psj.2021.101652] [PMID] [PMCID] de Sá Magalhães, S., & Keshavarz-Moore, E. (2021). Pichia pastoris (Komagataella phaffii) as a cost-effective tool for vaccine production for low-and middle-income countries (LMICs). Bioengineering, 8(9), 119. [PMID] [PMCID] De, S., Mattanovich, D., Ferrer, P., & Gasser, B. (2021). Established tools and emerging trends for the production of recombinant proteins and metabolites in Pichia pastoris. Essays in Biochemistry, 65(2), 293-307. [DOI:10.1042/EBC20200138] [PMID] Ebrahimi, S. M., Tebianian, M., Toghyani, H., Memarnejadian, A., & Attaran, H. R. (2010). Cloning, expression and purification of the influenza A (H9N2) virus M2e antigen and truncated Mycobacterium tuberculosis HSP70 as a fusion protein in Pichia pastoris. Protein Expression and Purification, 70(1), 7-12. [PMID] Farsiani, H., Mosavat, A., Soleimanpour, S., Sadeghian, H., Akbari Eydgahi, M. R., & Ghazvini, K., et al. (2016). Fc-based delivery system enhances immunogenicity of a tuberculosis subunit vaccine candidate consisting of the ESAT-6: CFP-10 complex. Molecular BioSystems, 12(7), 2189-2201. [DOI:10.1039/c6mb00174b] [PMID] França, R. C., Conceição, F. R., Mendonça, M., Haubert, L., Sabadin, G., & de Oliveira, P. D., et al. (2015). Pichia pastoris X-33 has probiotic properties with remarkable antibacterial activity against Salmonella Typhimurium. Applied Microbiology and Biotechnology, 99(19), 7953–7961. [DOI:10.1007/s00253-015-6696-9] [PMID] Gaboardi, G. C., Alves, D., Gil de Los Santos, D., Xavier, E., Nunes, A. P., & Finger, P., et al. (2019). Influence of Pichia pastoris X-33 produced in industrial residues on productive performance, egg quality, immunity, and intestinal morphometry in quails. Scientific Reports, 9(1), 15372. [PMID] [PMCID] Ghazvini, K., Neshani, A., Farsiani, H., Youssefi, M., & Keikha, M. (2021). Preparation and evaluation of antibacterial properties of Pexiganan, a Magainin analogue with Broadly-Spectrum Antimicrobial Activity. Pakistan Journal of Medical & Health Sciences, 15(6), 1778-1784. [Link] Gholami, A., Shafiei-Jandaghi, N. Z., Ghavami, N., Tavakoli, F., Yavarian, J., & Mokhtari-Azad, T. (2022). Assessment of influenza A (H1N1, H3N2) oseltamivir resistance during 2017-2019 in Iran. Iranian Journal of Microbiology, 14(4), 545-553. [DOI:10.18502/ijm.v14i4.10241] [PMID] [PMCID] Golgol, E., Mayahi, M., Boroomand, Z., & Shoshtari, A. (2023). Effect of vaccination on distribution and immune response of avian influenza virus H9N2 in Coturnix coturnix. Archives of Razi Institute, 78(6), 1746-1752. [DOI:10.32592/ARI.2023.78.6.1746] [PMID] [PMCID] Gong, X., Hu, M., Chen, W., Yang, H., Wang, B., & Yue, J., et al. (2021). Reassortment network of influenza A virus. Frontiers in Microbiology, 12, [DOI:10.3389/fmicb.2021.793500] [PMID] [PMCID] Hwang, J. S., Yamada, K., Honda, A., Nakade, K., & Ishihama, A. (2000). Expression of functional influenza virus RNA polymerase in the methylotrophic yeast Pichia pastoris. Journal of Virology, 74(9), 4074-4084. [DOI:10.1128/jvi.74.9.4074-4084.2000] [PMID] [PMCID] Kebriaei, A., Derakhshan, M., Meshkat, Z., Eidgahi, M. R., Rezaee, S. A., & Farsiani, H., et al. (2016). Construction and immunogenicity of a new Fc-based subunit vaccine candidate against Mycobacterium tuberculosis. Molecular Biology Reports, 43(9), 911–922. [DOI:10.1007/s11033-016-4024-9] [PMID] Kim, Y. H., Hong, K. J., Kim, H., & Nam, J. H. (2022). Influenza vaccines: Past, present, and future. Reviews in Medical Virology, 32(1), e2243. [DOI:10.1002/rmv.2243] [PMID] [PMCID] Kingston, N. J., Snowden, J. S., Martyna, A., Shegdar, M., Grehan, K., & Tedcastle, A., et al. (2023). Production of antigenically stable enterovirus A71 virus-like particles in Pichia pastoris as a vaccine candidate. The Journal of General Virology, 104(6), 001867. [DOI:10.1099/jgv.0.001867] [PMID] Kopera, E., Dwornyk, A., Kosson, P., Florys, K., Sączyńska, V., & Dębski, J., et al. (2014). Expression, purification and characterization of glycosylated influenza H5N1 hemagglutinin produced in Pichia pastoris. Acta Biochimica Polonica, 61(3), 597-602. [DOI:10.18388/abp.2014_1882] [PMID] Kopera, E., Zdanowski, K., Uranowska, K., Kosson, P., Sączyńska, V., & Florys, K., et al. (2019). High-titre neutralizing antibodies to H1N1 influenza virus after mouse immunization with yeast expressed H1 antigen: A promising influenza vaccine candidate. Journal of Immunology Research, 2019, [PMID] [PMCID] Kulkarni, R. R., Gaghan, C., Gorrell, K., Sharif, S., & Taha-Abdelaziz, K. (2022). Probiotics as alternatives to antibiotics for the prevention and control of necrotic enteritis in chickens. Pathogens, 11(6), 692. [PMID] [PMCID] Kuruti, K., Vittaladevaram, V., Urity, S. V., Palaniappan, P., & Bhaskar, R. U. (2020). Evolution of Pichia pastoris as a model organism for vaccines production in healthcare industry. Gene Reports, 21, [DOI:10.1016/j.genrep.2020.100937] Li, J., Shi, L. W., Yu, B. W., Huang, L. R., Zhou, L. Y., & Shi, L., et al. (2023). Safety and immunogenicity of a pichia pastoris-expressed bivalent human papillomavirus (types 16 and 18) L1 virus-like particle vaccine in healthy Chinese women aged 9-45 years: A randomized, double-blind, placebo-controlled phase 1 clinical trial. Vaccine, 41(19), 3141-3149. [DOI:10.1016/j.vaccine.2023.04.009] [PMID] Li, K., Gao, H., Gao, L., Qi, X., Gao, Y., & Qin, L., et al. (2012). Recombinant gp90 protein expressed in Pichia pastoris induces a protective immune response against reticuloendotheliosis virus in chickens. Vaccine, 30(13), 2273-2281. [DOI:10.1016/j.vaccine.2012.01.075] [PMID] Li, P., Anumanthan, A., Gao, X. G., Ilangovan, K., Suzara, V. V., & Düzgüneş, N., et al. (2007). Expression of recombinant proteins in Pichia pastoris. Applied Biochemistry and Biotechnology, 142(2), 105–124. [DOI:10.1007/s12010-007-0003-x] [PMID] Lin, Q., Yang, K., He, F., Jiang, J., Li, T., & Chen, Z., et al. (2016). Production of influenza virus HA1 harboring native-like epitopes by Pichia pastoris. Applied Biochemistry and Biotechnology, 179(7), 1275–1289. [DOI:10.1007/s12010-016-2064-1] [PMID] Liu, B., Shi, P., Wang, T., Zhao, Y., Lu, S., & Li, X., et al. (2020). Recombinant H7 hemagglutinin expressed in glycoengineered Pichia pastoris forms nanoparticles that protect mice from challenge with H7N9 influenza virus. Vaccine, 38(50), 7938-7948. [DOI:10.1016/j.vaccine.2020.10.061] [PMID] Maleknia, S., Ahmadi, H., & Norouzian, D. (2011). Immobilization of Pichia pastoris cells containing alcohol oxidase activity. Iranian Journal of Microbiology, 3(4), 210–215. [PMID] Martinet, W., Saelens, X., Deroo, T., Neirynck, S., Contreras, R., & Min Jou, W., et al. (1997). Protection of mice against a lethal influenza challenge by immunization with yeast-derived recombinant influenza neuraminidase. European Journal of Biochemistry, 247(1), 332-338. [DOI:10.1111/j.1432-1033.1997.00332.x] [PMID] Mayahi, M., Jolodar, A., Masaeli, S., Hamidinejat, H., Seyfi Abad Shapouri, M., & Moori Bakhtiari, N. (2016). Cloning and expression of Eimeria necatrix microneme5 gene in Escherichia coli. Iranian Journal of Veterinary Medicine, 10(3), 157-163. [DOI: 10.22059/ijvm.2016.58677] Mirzaiee, K., Shoushtari, A., Bokaie, S., Fallah Mehrabadi, M. H., & Peighambari, S. M. (2020). Trend of changes in the titer of antibody against avian influenza virus H9N2 during raising period in vaccinated and unvaccinated broiler farms in Qazvin province, Iran: A cohort study. Archives of Razi Institute, 75(1), 9-16. [PMID] Mirzaie, K., Shushtari, A., Bokaie, S., Fallah Mehrabadi, M., & Peighambari S. (2021). [Evaluation of H9N2 infection determinants in Qazvin broiler farms during 2016-17: A cohort study (Persian)]. Iranian Journal of Epidemiology, 16(4), 325-334. [Link] Mohammadi, E., Pirkhezranian, Z., Dashty, S., Saedi, N., & Sekhavati, M. H. (2021). Design and computational analysis of a chimeric avian influenza antigen: A yeast-displayed, universal and cross-protective vaccine candidate. BioRxiv. [Link] Mohammadzadeh, R., Karbalaei, M., Soleimanpour, S., Mosavat, A., Rezaee, S. A., & Ghazvini, K., et al. (2021). Practical methods for expression of recombinant protein in the Pichia pastoris system. Current Protocols, 1(6), e155. [DOI:10.1002/cpz1.155] [PMID] Morens, D. M., Park, J., & Taubenberger, J. K. (2023). Many potential pathways to future pandemic influenza. Science Translational Medicine, 15(718), eadj2379. [DOI:10.1126/scitranslmed.adj2379] [PMID] Moridi, K., Hemmaty, M., Eidgahi, M. R. A., Najafi, M. F., Zare, H., & Ghazvini, K., et al. (2020). Construction, cloning, and expression of Melittin antimicrobial peptide using Pichia pastoris expression system. Gene Reports, 21, [DOI:10.1016/j.genrep.2020.100900] Mosavat, A., Soleimanpour, S., Farsiani, H., Sadeghian, H., Ghazvini, K., & Sankian, M., et al. (2016). Fused Mycobacterium tuberculosis multi-stage immunogens with an Fc-delivery system as a promising approach for the development of a tuberculosis vaccine. Infection, Genetics and Evolution, 39, 163-172. [DOI:10.1016/j.meegid.2016.01.027] [PMID] Motamedi Nasab, S. I., Pourbakhsh, S. A., & Haghbin Nazarpak, H. (2023). Evaluation of inactivated vaccine’s Antibody response to different H9N2 Vaccination programs with Hemagglutination Inhibition (HI) assay. Journal of Poultry Sciences and Avian Diseases, 1(3), 51-58. [DOI:10.61838/kman.jpsad.1.3.5] Mu, X., Hu, K., Shen, M., Kong, N., Fu, C., & Yan, W., et al. (2016). Protection against influenza A virus by vaccination with a recombinant fusion protein linking influenza M2e to human serum albumin (HSA). Journal of Virological Methods, 228, 84-90. [DOI:10.1016/j.jviromet.2015.11.014] [PMID] Mukhopadhyay, E., Brod, F., Angell-Manning, P., Green, N., Tarrant, R. D., & Detmers, F. J., et al. (2022). Production of a high purity, C-tagged hepatitis B surface antigen fusion protein VLP vaccine for malaria expressed in Pichia pastoris under cGMP conditions. Biotechnology and Bioengineering, 119(10), 2784-2793. [DOI: 10.1002/bit.28181] [PMID] [PMCID] Murugan, S., Ponsekaran, S., Kannivel, L., Mangamoori, L. N., Chandran, D., & Villuppanoor Alwar, S., et al. (2013). Recombinant haemagglutinin protein of highly pathogenic avian influenza A (H5N1) virus expressed in Pichia pastoris elicits a neutralizing antibody response in mice. Journal of Virological Methods, 187(1), 20-25. [DOI:10.1016/j.jviromet.2012.07.026] [PMID] Neshani, A., Eidgahi, M. R. A., Zare, H., & Ghazvini, K. (2018).Extended-Spectrum antimicrobial activity of the Low cost produced Tilapia Piscidin 4 (TP4) marine antimicrobial peptide. Journal of Research in Medical and Dental Science, 6(5), 327-334. [Link] Neshani, A., Tanhaeian, A., Zare, H., Eidgahi, M. R. A., & Ghazvini, K. (2019). Preparation and evaluation of a new biopesticide solution candidate for plant disease control using pexiganan gene and Pichia pastoris expression system. Gene Reports, 17, [DOI:10.1016/j.genrep.2019.100509] Nguyen, T. Q., Van, T. T. H., Lin, Y. C., Van, T. N. N., Bui, K. C., & Le, Q. G., et al. (2014). A potential protein-based vaccine for influenza H5N1 from the recombinant HA1 domain of avian influenza A/H5N1 expressed in Pichia pastoris. Future Virology, 9(12), 1019-1031. [Link] Nili, H., & Asasi, K. (2003). Avian influenza (H9N2) outbreak in Iran. Avian Diseases, 47(3 Suppl), 828–831. [DOI:10.1637/0005-2086-47.s3.828] [PMID] Norouzian, H., Bashashati, M., & Vasfimarandi, M. (2014). Phylogenetic analysis of neuraminidase gene of H9N2 avian influenza viruses isolated from chicken in Iran during 2010-2011. Iranian Journal of Microbiology, 6(2), 91–97. [PMID] Noseda, D. G., D’Alessio, C., Santos, J., Idrovo-Hidalgo, T., Pignataro, F., & Wetzler, D. E., et al. (2023). Development of a cost-effective process for the heterologous production of SARS-CoV-2 spike receptor binding domain using Pichia pastoris in stirred-tank bioreactor. Fermentation, 9(6), 497. [DOI:10.3390/fermentation9060497] Nouri Gharajalar, S., Ahmadi, M., Shahabi, S., & Hosseini, B. (2016). Use of immunogenic moiety of Pseudomonas aeruginosa exotoxin A as a DNA vaccine in experimentally contaminated mice. Iranian Journal of Veterinary Medicine, 10(2), 105-112. [DOI:10.22059/IJVM.2016.57896] Peighambari, S. M., Yazdani, A., Taheri, H., & Shahcheraghi, F. (2023). Plasmid profile and enterobacterial repetitive intergenic consensus-PCR characterization of salmonella infantis isolates recovered from poultry sources. Iranian Journal of Veterinary Medicine, 17(1), 27-36. [DOI:10.32598/IJVM.17.1.1005073] Perdue, M. L., & Swayne, D. E. (2005). Public health risk from avian influenza viruses. Avian Diseases, 49(3), 317-327. [DOI:10.1637/7390-060305R.1] [PMID] Pietrzak, M., Macioła, A., Zdanowski, K., Protas-Klukowska, A. M., Olszewska, M., & Śmietanka, K., et al. (2016). An avian influenza H5N1 virus vaccine candidate based on the extracellular domain produced in yeast system as subviral particles protects chickens from lethal challenge. Antiviral Research, 133, 242-249. [DOI:10.1016/j.antiviral.2016.08.001] [PMID] Pratanaphon, R., Channoi, P., & Suphawilai, C. (2018). Cloning and Expression of HA2 gene of Avian Influenza A (H5N1 HA2) Virus in Pichia pastoris. Food and Applied Bioscience Journal, 6(2), 106-116. [DOI:10.14456/fabj.2018.10] Qian, X. U. E., Wenge, M. A., Kayizha, S., Ping, W. A. N. G., Tao, H. A. N., & Shukui, M. I. A. O., et al. (2021). Avian influenza virus-like particles expressed and assembled by multi-copy recombinant pichia pastoris. Xinjiang Agricultural Sciences, 58(11), 2148. [DOI: 10.6048/j.issn.1001-4330.2021.11.022] Ravansalar, H., Tadayon, K., & Ghazvini, K. (2016). Molecular typing methods used in studies of Mycobacterium tuberculosis in Iran: A systematic review. Iranian Journal of Microbiology, 8(5), 338-346. [PMID] Rungrojcharoenkit, K., Sunintaboon, P., Ellison, D., Macareo, L., Midoeng, P., & Chaisuwirat, P., et al. (2020). Development of an adjuvanted nanoparticle vaccine against influenza virus, an in vitro study. PLoS One, 15(8), e0237218. [DOI:10.1371/journal.pone.0237218] [PMID] [PMCID] Saelens, X., Vanlandschoot, P., Martinet, W., Maras, M., Neirynck, S., & Contreras, R., et al. (1999). Protection of mice against a lethal influenza virus challenge after immunization with yeast-derived secreted influenza virus hemagglutinin. European Journal of Biochemistry, 260(1), 166-175. [DOI:10.1046/j.1432-1327.1999.00150.x] [PMID] Sahebnazar, A., Tahmoorepur, M., & Sekhavati, M. H. (2021). Molecular docking CLF36 peptide against avian influenza virus subtype H5N8 antigenes. Veterinary Research & Biological Products, 34(4), 54-65. [DOI:10.22092/VJ.2020.351493.1754] Salamatian, I., Moshaverinia, A., Razmyar, J., & Ghaemi, M. (2020). In vitro Acquisition and Retention of Low-Pathogenic Avian Influenza H9N2 by Musca domestica (Diptera: Muscidae). Journal of Medical Entomology, 57(2), 563–567. [DOI:10.1093/jme/tjz175] [PMID] [PMCID] SGil de Los Santos, D., Gil de Los Santos, J. R., Gil-Turnes, C., Gaboardi, G., Fernandes Silva, L., &França, R., et al. (2018). Probiotic effect of Pichia pastoris X-33 produced in parboiled rice effluent and YPD medium on broiler chickens. Plos One, 13(2), e0192904. [PMID] [PMCID] Seyedtaghiya, M. H., Fasaei, B. N., & Peighambari, S. M. (2021). Antimicrobial and antibiofilm effects of Satureja hortensis essential oil against Escherichia coli and Salmonella isolated from poultry. Iranian Journal of Microbiology, 13(1), 74–80. [DOI:10.18502/ijm.v13i1.5495] [PMID] [PMCID] Shehata, A. A., Fiebig, P., Sultan, H., Hafez, M., & Liebert, U. G. (2012). Development of a recombinant ELISA using yeast (Pichia pastoris)-expressed polypeptides for detection of antibodies against avian influenza A subtype H5. Journal of Virological Methods, 180(1-2), 18-25. [DOI:10.1016/j.jviromet.2011.12.004] [PMID] Shirdast, H., Ebrahimzadeh, F., Taromchi, A. H., Mortazavi, Y., Esmaeilzadeh, A., & Sekhavati, M. H., et al. (2021). Recombinant Lactococcus Lactis Displaying Omp31 antigen of Brucella melitensis can induce an immunogenic response in BALB/c Mice. Probiotics and Antimicrobial Proteins, 13(1), 80–89. [DOI:10.1007/s12602-020-09684-1] [PMID] Singh, A., & Narang, A. (2020). The Mut+ strain of Komagataella phaffii (Pichia pastoris) expresses P AOX1 5 and 10 times faster than Mut s and Mut− strains: Evidence that formaldehyde or/and formate are true inducers of P AOX1. Applied Microbiology and Biotechnology, 104(18), 7801–7814. [DOI:10.1007/s00253-020-10793-8] [PMID] Soleimanpour, S., Farsiani, H., Mosavat, A., Ghazvini, K., Eydgahi, M. R., & Sankian, M., et al. (2015). APC targeting enhances immunogenicity of a novel multistage Fc-fusion tuberculosis vaccine in mice. Applied Microbiology and Biotechnology, 99, 10467-10480. [DOI: 10.1007/s00253-015-6952-z] [PMID] Stachyra, A., Pietrzak, M., Macioła, A., Protasiuk, A., Olszewska, M., & Śmietanka, K., et al. (2017). A prime/boost vaccination with HA DNA and Pichia-produced HA protein elicits a strong humoral response in chickens against H5N1. Virus Research, 232, 41-47. [DOI:10.1016/j.virusres.2017.01.025] [PMID] Stubbs, A. C., Martin, K. S., Coeshott, C., Skaates, S. V., Kuritzkes, D. R., & Bellgrau, D., et al. (2001). Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nature Medicine, 7(5), 625-629. [DOI:10.1038/87974] [PMID] Subathra, M., Santhakumar, P., Satyam Naidu, S., Lakshmi Narasu, M., Senthilkumar, T. M., & Lal, S. K. (2014a). Expression of avian influenza virus (H5N1) hemagglutinin and matrix protein 1 in Pichia pastoris and evaluation of their immunogenicity in mice. Applied Biochemistry and Biotechnology, 172(7), 3635–3645. [DOI:10.1007/s12010-014-0771-z] [PMID] Subathra, M., Santhakumar, P., Narasu, M. L., Beevi, S. S., & Lal, S. K. (2014b). Evaluation of antibody response in mice against avian influenza A (H5N1) strain neuraminidase expressed in yeast Pichia pastoris. Journal of Biosciences, 39(3), 443–451.[DOI:10.1007/s12038-014-9422-3] [PMID] Sulfianti, A., Yasmon, A., Bela, B., & Ibirahim, F. (2015). Cloning and Expression of HA1 Gene of H1N1 Influenza Virus 2009 Pandemic (H1n1pdm09) Indonesia Strain in the Pichia Pastoris Expression System for the Development of Influenza Vaccine. Microbiology Indonesia, 9(2), 7. [DOI:10.5454/mi.9.2.7] Taghavian, O., Spiegel, H., Hauck, R., Hafez, H. M., Fischer, R., & Schillberg, S. (2013). Protective oral vaccination against infectious bursal disease virus using the major viral antigenic protein VP2 produced in Pichia pastoris. PLoS One, 8(12), e83210. [DOI:10.1371/journal.pone.0083210] [PMID] [PMCID] Taghizadeh, M., & Dabaghian, M. (2022). Nasal Administration of M2e/CpG-ODN Encapsulated in N-Trimethyl Chitosan (TMC) Significantly Increases Specific Immune Responses in a Mouse Model. Archives of Razi Institute, 77(6), 2259–2268.[DOI:10.22092/ARI.2022.360447.2583] [PMID] Tanaka, T., Yamada, R., Ogino, C., & Kondo, A. (2012). Recent developments in yeast cell surface display toward extended applications in biotechnology. Applied Microbiology and Biotechnology, 95(3), 577–591. [DOI:10.1007/s00253-012-4175-0] [PMID] Wang, S. C., Liao, H. Y., Zhang, J. Y., Cheng, T. R., & Wong, C. H. (2019). Development of a universal influenza vaccine using hemagglutinin stem protein produced from Pichia pastoris. Virology, 526, 125-137. [DOI:10.1016/j.virol.2018.10.005] [PMID] Wasilenko, J. L., Sarmento, L., Spatz, S., & Pantin-Jackwood, M. (2010). Cell surface display of highly pathogenic avian influenza virus hemagglutinin on the surface of Pichia pastoris cells using α-agglutinin for production of oral vaccines. Biotechnology Progress, 26(2), 542-547. [DOI:10.1002/btpr.343] [PMID] Wollborn, D., Munkler, L. P., Horstmann, R., Germer, A., Blank, L. M., & Büchs, J. (2022). Predicting high recombinant protein producer strains of Pichia pastoris MutS using the oxygen transfer rate as an indicator of metabolic burden. Scientific Reports, 12(1), 11225. [DOI:10.1038/s41598-022-15086-w] [PMID] [PMCID] Wu, S., & Letchworth, G. J. (2004). High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques, 36(1), 152-154. [DOI:10.2144/04361DD02] [PMID] Wu, X., Cai, P., Yao, L., & Zhou, Y. J. (2023). Genetic tools for metabolic engineering of Pichia pastoris. Engineering Microbiology, 3(4), 100094. [DOI:10.1016/j.engmic.2023.100094] Xu, H., Wang, T., Sun, P., Hou, X., Gong, X., & Zhang, B., et al. (2023). A bivalent subunit vaccine efficiently produced in Pichia pastoris against SARS-CoV-2 and emerging variants. Frontiers in Microbiology, 13, [DOI:10.3389/fmicb.2022.1093080] [PMID] [PMCID] Yang, Z. J., Wang, C. Y., Lee, L. H., Chuang, K. P., Lien, Y. Y., Yin, H. S., et al. (2010). Development of ELISA kits for antibodies against avian reovirus using the σC and σB proteins expressed in the methyltropic yeast Pichia pastoris. Journal of Virological Methods, 163(2), 169-174. [DOI:10.1016/j.jviromet.2009.07.009] [PMID] Yang, Y. L., Chang, S. H., Gong, X., Wu, J., & Liu, B. (2012). Expression, purification and characterization of low-glycosylation influenza neuraminidase in α-1, 6-mannosyltransferase defective Pichia pastoris. Molecular Biology Reports, 39(2), 857–864. [DOI:10.1007/s11033-011-0809-z] [PMID] Yongkiettrakul, S., Boonyapakron, K., Jongkaewwattana, A., Wanitchang, A., Leartsakulpanich, U., & Chitnumsub, P., et al. (2009). Avian influenza A/H5N1 neuraminidase expressed in yeast with a functional head domain. Journal of Virological Methods, 156(1-2), 44-51. [DOI:10.1016/j.jviromet.2008.10.025] [PMID] [PMCID] Yousefi, S., Tahmoorespur, M., & Sekhavati, M. H. (2016). Cloning, expression and molecular analysis of Iranian Brucella melitensis Omp25 gene for designing a subunit vaccine. Research in Pharmaceutical Sciences, 11(5), 412-418. [DOI:10.4103/1735-5362.192493] [PMID] [PMCID] Zhang, C., Ma, Y., Miao, H., Tang, X., Xu, B., & Wu, Q., et al. (2020). Transcriptomic analysis of Pichia pastoris (Komagataella phaffii) GS115 during heterologous protein production using a high-cell-density fed-batch cultivation strategy. Frontiers in Microbiology, 11, [DOI:10.3389/fmicb.2020.00463] [PMID] [PMCID] Zhang, J., Chen, P., Sun, H., Liu, Q., Wang, L., & Wang, T., et al. (2014). Pichia pastoris expressed EtMic2 protein as a potential vaccine against chicken coccidiosis. Veterinary Parasitology, 205(1-2), 62-69. [DOI:10.1016/j.vetpar.2014.06.029] [PMID] Zhang, Y., Yang, S., Dai, X., Liu, L., Jiang, X., & Shao, M., et al. (2015). Protective immunity induced by the vaccination of recombinant Proteus mirabilis OmpA expressed in Pichia pastoris. Protein Expression and Purification, 105, 33-38. [DOI:10.1016/j.pep.2014.10.001] [PMID] Zhao, F., Wang, Y., Chen, L., Zhang, X., Ducatez, M., & He, J., et al. (2021). Critical influenza-like illness in a nine-year-old associated with a poultry-origin H9N2 avian influenza virus: Risk assessment and zoonotic potential. Frontiers in Virology, 1, [Link] | ||
آمار تعداد مشاهده مقاله: 1,225 تعداد دریافت فایل اصل مقاله: 478 |