- Ke, Q., Zhang, F., & Zhang, Y. (2016). Optimization of L-shaped Corner Dowel Joint in Modified Poplar using Finite Element Analysis with Taguchi Method. Journal of the Korean Wood Science and Technology, 44(2), 204-217.
- Chu, D., Xue, L., Zhang, Y., Kang, L., & Mu, J. (2016). Surface characteristics of poplar wood with high-temperature heat treatment: Wettability and surface brittleness. BioResources, 11(3), 6948-6967.
- Hill, C.A.S. (2006). Wood Modification: Chemical, Thermal, and Other Processes, Wiley, Chichester, England. 264
- Awoyemi, L., Cooper, P.A., & Ung, T.Y. (2009). In-treatment cooling during thermal modification of wood in soy oil medium: soy oil uptake, wettability, water uptake and swelling properties. European Journal of Wood and Wood Products, 67(4), 465-470.
- Suri, I. F., Purusatama, B. D., Lee, S., Kim, N., Hidayat, W., Ma'ruf, S.D., & Febrianto, F. (2021). Characteristic features of the oil-heat treated woods from tropical fast growing wood species. Wood Research, 66(3), 365-378.
- Wang, J.Y., & Cooper, P.A. (2005). Effect of oil type, temperature and time on moisture properties of hot oil-treated wood. European Journal of Wood and Wood Products, 63(6), 417-422.
- Esteves, B. (2009). Wood modification by heat treatment: A review. BioResources, 4(1), 470-404.
- Acosta, R.A., Arango, J.A.M., & Da Silva, E.J. (2021). Technologies Applied to Wood Heat Treatments, a Review. Scientia et Technica, 26(2), 129-136.
- Lee, S.H., Ashaari, Z., Lum, W.C., Halip, J.A., Ang, A.F., Tan, L.P., Chin, K.L., & Tahir, P.M. (2018). Thermal treatment of wood using vegetable oils: A review. Construction and Building Materials, 181, 408-419.
- Rapp, A.O., & Sailer, M. (2001). Oil heat treatment of wood in Germany-State of the art. Review on heat treatments of wood. In Proceedings of the Special Seminar, 9th Feb., Antibes, France, Forestry and Forestry Products, France. COST Action E, 22, 43-60.
- Dubey, M.K., Pang, S., & Walker, J. (2012). Oil uptake by wood during heat-treatment and post-treatment cooling, and effects on wood dimensional stability. European Journal of Wood and Wood Products, 70(1), 183-190.
- Bal, B. C. (2015). Physical properties of beech wood thermally modified in hot oil and in hot air at various temperatures. Maderas. Ciencia y tecnología, 17(4), 789-798.
- Godinho, D., Araújo, S.D.O., Quilhó, T., Diamantino, T., & Gominho, J. (2021). Thermally modified wood exposed to different weathering conditions: A review. Forests, 12(10), 1400.
- Var, A.A., Yalçin, M., Yalçin, Ö.Ü., & Demir, M. (2021). Effects of hot-cold oil treatment on biological resistance and physical properties of Brutia pine sapwood. Maderas. Ciencia y tecnología, 23, 42, 1-12.
- Bak, M. and Nemeth, M., 2012. (2012). Modification of wood by oil heat treatment. In International Scientific Conference March, 52(2), 63-70.
- BS EN 927-6. (2006). Paints and varnishes. Coating materials and coating systems for exterior wood Exposure of wood coatings to artificial weathering using fluorescent UV lamps and water.
- Roux, M.L., & Podgorski, L. (2000). The advantages of having in the future a European accelerated weathering test for wood finishes. Surface Coatings International, 83(8): 399-403.
- Mastouri, A., Efhamisisi, D., Shirmohammadli, Y., & Oladi, R. (2021). Physicochemical properties of thermally treated poplar wood in silicone and rapeseed oils: A comparative study. Journal of Building Engineering, 43, 102511.
- ISO 13061-13. (2016). Physical and mechanical properties of wood — Test methods for small clear wood specimens — Part 13: Determination of radial and tangential shrinkage
- ISO 13061-2. (2013). Physical and mechanical properties of wood — Test methods for small clear wood specimens — Part 2: Determination of density for physical and mechanical tests
- Pockrandt, M., Jebrane, M., Cuccui, I., Allegretti, O., Uetimane Jr, E., & Terziev, N. (2018). Industrial Thermowood® and Termovuoto thermal modification of two hardwoods from Mozambique. Holzforschung, 72(8), 701-709.
- Sidorova, K. (2008). Oil Heat Treatment of Wood. In Proceedings of the 7th Meeting of the Nordic-Baltic Network in Wood Material Science and Engineering (WSE), 27–28 October 2011, Oslo, Norway.
- Mohebby, B., Kevily, H., & Kazemi-Najafi, S. (2014). Oleothermal modification of fir wood with a combination of soybean oil and maleic anhydride and its effects on physico-mechanical properties of treated wood. Wood Science and Technology, 48(4), 797-809.
- Abde, M. R., Mootab Saei, A., Mohebby, B., & Kazemi-Najafi, S. (2015). Influence of Temperature and Holding Time in Oil Heat Treatment on Physical and Mechanical Properties of Fir Wood (Abies Sp.). Forest and Wood Products, 68(2), 303-315.
- Esteves, B., Graca, J., & Pereira, H. (2008). Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung, 62(3), 344-351.
- Abedini, R., Gorji. M., (2020). Effect of different oil heat treatment conditions on chemical structure and physical properties of wingnut (Pterocarya fraxinifolia) wood. Iranian Journal of Wood and Paper Industries, 11(2), 199-209.
- Suri, I.F., Purusatama, B.D., Kim, J.H., Yang, G.U., Prasetia, D., Kwon, G.J., Hidayat, W., Lee, S. H., Febrianto, F., Kim, N. H. (2022). Comparison of physical and mechanical properties of Paulownia tomentosa and Pinus koraiensis wood heat-treated in oil and air. European Journal of Wood and Wood Products, 80(6), 1389-1399.
- Asadi Khoramabadi, L., Khazaeian, A., Masteri Farahani, M.R., & Shakeri, A. (2014). Effect of HeatTreatment with Modified Soybean Oil on Mechanical Properties of Beech. Iranian Journal of Wood and Paper Science Research, 29(2), 208-219.
- Scheiding, W., Direske, M., & Zauer, M. (2016). Water absorption of untreated and thermally modified sapwood and heartwood of Pinus sylvestris European Journal of Wood and Wood Products, 72(4), 585-589.
- Jämsä, S., & Viitaniemi, P. (2001). Heat treatment of wood–Better durability without chemicals. In Proceedings of special seminar held in Antibes, France, pp 1-66.
- Bazyar, B. (2012). Decay resistance and physical properties of oil heat treated aspen wood. BioResources, 7(1): 696-705. http://dx.doi.org/10.15376/biores.7.1.696-705
- Kamdem D., & Pizzi, A. (2002). Jermannaud, Durability of heat-treated wood. Holz als Roh-und Werkstoff, 60(1), 1-6.
- Suri, I. F., Purusatama, B.D., Kim, J. H., Hidayat, W., Iswanto, A. H., Park, S. Y., Lee, S., Kim, N.H. (2023). Artificial Weathering Effects on the Physical and Chemical Properties of Paulownia tomentosa and Pinus koraiensis Woods Heat-Treated in Oil and Air. Forests, 14(8), 1546.
- Yildiz, S., Tomak, E. D., Yildiz, U. C., & Ustaomer, D. (2013). Effect of artificial weathering on the properties of heat treated wood. Polymer Degradation and Stability, 98(8), 1419-1427.
- Yildiz, S., Yildiz, U.C., & Tomak, E.D. (2011). The effects of natural weathering on the properties of heat-treated alder wood. BioResources, 6(3).
- Nemeth, R., Tolvaj, L., Bak, M., & Alpar, T. (2016). Colour stability of oil-heat treated black locust and poplar wood during short-term UV radiation. Journal of Photochemistry and Photobiology A: Chemistry, 329, 287-292.
- Tolvaj, L., Nemeth, R., Pasztory, Z., Bejo, L., & Takats, P. (2014). Colour stability of thermally modified wood during short-term photodegradation. BioResources, 9(4), 6644-6651.
- Cui, X., & Matsumura, J. (2019). Wood surface changes of heat-treated Cunninghamia lanceolate following natural weathering. Forests, 10(9): 791.
- Pelosi, C., Agresti, G., Lanteri, L., Picchio, R., Gennari, E., & Lo Monaco, A. (2020). Artificial weathering effect on surface of heat-treated wood of Ayous (Triplochiton scleroxylon Shum). Environmental Sciences Proceedings, 3(1), 15.
- Kocaefe, Kocaefe, D., Poncsak, S., Dor, G. V., & Younsi, R. (2008). Effect of heat treatment on the wettability of white ash and soft maple by water. Holz als roh-und werkstoff, 66(5), 355-361
- Huang, X., Kocaefe, D., Kocaefe, Y., Boluk, Y., & Pichette, A. (2012). Changes in wettability of heat-treated wood due to artificial weathering. Wood Science and Technology, 46(6), 1215-1223.
- Jirouš-Rajković, V., & Miklečić, J. (2017). Weathering resistance of modified wood-a review. Godišnjak Akademije tehničkih znanosti Hrvatske, 1, 223-246.
- Mastouri, A., Efhamisisi, D., Tarmian, A., Boukherroub, R., Lexa, M., Karami, E., Panek, M., and Frigione, M. (2024). Sustainable superhydrophobic and self-cleaning wood via wax within Epoxy/PDMS nano-composite coatings: Durability related to surface morphology. Progress in Organic Coatings, 186” 107951.
- Okon, K. E., Lin, F., Chen, Y., & Huang, B. (2017). Effect of silicone oil heat treatment on the chemical composition, cellulose crystalline structure and contact angle of Chinese parasol wood. Carbohydrate Polymers, 164” 179-185
- Poletto, M., Zattera, A. J., & Santana, R.M. (2012). Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. Journal of Applied Polymer Science, 126(S1)” E337-E344.
- Yue, K., Qian, J., Wu, P., Jiao, X., Lu, D., & Song, X. (2023). Experimental analysis of thermally-treated Chinese poplar wood with focus on structural application. Industrial Crops and Products, 197, 116612.
- He, L., Zhang, T., Zhao, X., Zhao, Y., Xu, K., He, Z., & Yi, S. (2023). Synergistic effect of tung oil and heat treatment on surface characteristics and dimensional stability of wood. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 665, 131233.
- Esteves, B., Marques, A.V., Domingos, I., Pereira, H. (2013). Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas. Cienc y tecnología 15(2), 245-258.
- Hao, X., Wang, Q., Wang, Y., Han, X.,Yuan, C. L.,Cao, Y.,Lou, Z., & Li, Y. (2021). The effect of oil heat treatment on biological, mechanical and physical properties of bamboo. Journal of Wood Science, 67(1), 1-14.
- Pandey, K. K. (1999). A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science, 71(12), 1969-1975.
- Tarmian, A., & Mastouri, A. (2018). Changes in moisture exclusion efficiency and crystallinity of thermally modified wood with aging. iForest-Biogeosciences and Forestry, 12(1), 92-97.
- Colom, X., Carrillo, F., Nogués, F., & Garriga, P. (2003). Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polymer Degradation and Stability, 80(3), 543-549.
- Lim, S. Y., Abdul Mutalib, M. S., Khaza’ai, H., & Chang, S.K. (2018). Detection of fresh palm oil adulteration with recycled cooking oil using fatty acid composition and FTIR spectral analysis. International Journal of Food Properties, 21(1), 2428-2451.
- Temiz, A., Terziev, N., Eikenes, M., & Hafren, J. (2007). Effect of accelerated weathering on surface chemistry of modified wood. Applied Surface Science, 253(12), 5355-5362.
- Xing, D., Wang, S., & Li, J. (2015). Effect of artificial weathering on the properties of industrial-scale thermally modified wood. BioResources, 10(4), 8238-8252.
- Bessala, L. F. B., Gao, J., He, Z., Wang, Z., & Yi, S. (2023). Effects of heat treatment on color, dimensional stability, hygroscopicity and chemical structure of Afrormosia and Newtonia wood: A comparative study of air and palm oil medium. Polymers, 15(3), 774.
- Mburu, F., Dumarcay, S., Huber, F., Petrissans, M., & Gerardin, P. )2007(. Evaluation of thermally modified Grevillarobusta heartwood as an alternative to shortage of wood resource in Kenya: Characterisation of physicochemical properties and improvement of bio-resistance. Bioresource Technology, 98(18), 3478-3486.
- Anderson, E. L., Pawlak, Z., Owen, N. L., & Feist, W. C. (1991). Infrared studies of wood weathering. Part I: Softwoods. Applied Spectroscopy, 45(4), 641-647.
- Mastouri, A., Azadfallah, M., Rezaei, F., Tarmian, A., Efhamisisi, D., Mahmoudkia, M., & Corcione, C. E. (2023). Kinetic studies on photo-degradation of thermally-treated spruce wood during natural weathering: Surface performance, lignin and cellulose crystallinity. Construction and Building Materials, 392, 131923.
- Tomak, E.D., Ustaomer, D., Ermeydan, M.A., & Yildiz, S. (2018). An investigation of surface properties of thermally modified wood during natural weathering for 48 months. Measurement, 127, 187-197.
|