تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,005 |
تعداد مشاهده مقاله | 125,494,148 |
تعداد دریافت فایل اصل مقاله | 98,754,744 |
تأثیر نگهداری در انبار سرد بر فعالیت آنزیمهای آنتی اکسیدانی برخی ملونها | ||
علوم باغبانی ایران | ||
دوره 55، شماره 2، تیر 1403، صفحه 177-197 اصل مقاله (1.82 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2024.365091.2126 | ||
نویسندگان | ||
مریم کرباسی1؛ فروزنده سلطانی صالح آبادی2؛ سیامک کلانتری* 3 | ||
1گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
2گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی،دانشگاه تهران، کرج، ایران | ||
3گروه علوم باغبانی ،، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، کرج،ایران | ||
چکیده | ||
در محصولات حساس به سرما، دماهای پایین منجر به بروز آسیب سرمازدگی میشود. تحت شرایط تنش سرمازدگی، تولید گونههای اکسیژن فعال افزایش مییابد و باعث تنش اکسیداتیو میشود. گیاهان یک سیستم دفاعی آنتی اکسیدانی کارآمد به منظور جلوگیری از تجمع و حذف گونههای اکسیژن فعال ایجاد کردهاند. با هدف بررسی فعالیت آنتی اکسیدانی ملونها تحت شرایط دمای پایین، هفت ژنوتیپ ملون شامل 4 والد (آبادان، خاتونی، دستنبو، ژاپن) و 3 هیبرید (خاتونی×آبادان، دستنبو×خاتونی، ژاپن×خاتونی) در سالهای 1398و 1399 در مرکز تحقیقات علوم باغبانی کرج، دانشگاه تهران کشت شدند. میوهها بعد از برداشت در سه دمای (4،1و 13درجه سانتیگراد) به مدت سی روز نگهداری شدند. نتایج پژوهش نشان داد که میزان سفتی بافت و مواد جامد محلول کل در ژنوتیپهای ژاپن و ژاپن×خاتونی نسبت به سایر ملونها بالاتر بود. همچنین ژنوتیپهای ژاپن و ژاپن×خاتونی، پایینترین شاخص سرمازدگی (به ترتیب 10 درصد و 8 درصد) را بعد از سی روز نشان دادند. پایینترین میزان سفتی و مواد جامد محلول و بالاترین محتوای مالون دی آلدهید در ژنوتیپ دستنبو×خاتونی و بالاترین شاخص سرمازدگی (45 درصد) در ژنوتیپ خاتونی×آبادان دیده شد. میزان فعالیت آنزیمهای آنتی اکسیدانی (کاتالاز، پراکسیداز و سوپراکسید دیس موتاز) در ملونهایی که شاخص سرمازدگی بالاتری داشتند، پایینتر بود. بالاترین فعالیت آنزیمهای آنتی اکسیدانی در ژنوتیپهای ژاپن و ژاپن×خاتونی دیده شد. به نظر میرسد که محتوای بالاتر آنزیمهای کاتالاز، پراکسیداز و سوپراکسید دیس موتاز در بهبود مقاومت به سرما در این نمونههای ملون نقش دارند. ژنوتیپهای ژاپن و ژاپن×خاتونی به عنوان ژنوتیپهای با قابلیت ماندگاری بالا (تا سی روز) در دمای پایین توصیه میشوند. | ||
کلیدواژهها | ||
اکسیژن فعال؛ انبارمانی؛ سرمازدگی؛ ملون؛ هیبرید | ||
عنوان مقاله [English] | ||
The Impact of Cold Storage on Antioxidant Enzymes Activity of Some Melons | ||
نویسندگان [English] | ||
maryam karbasi1؛ Forouzandeh Soltani2؛ Siamak Kalantari3 | ||
1Department of Horticuitural Science, Faculty of Agricultural & Natural Resources, University of Tehran, Karaj, Iran | ||
2Department of Horticuitural Science, Faculty of Agricultural & Natural Resources, University of Tehran, Karaj, Iran | ||
3Department of Horticuitural Science, Faculty of Agricultural & Natural Resources, University of Tehran, Karaj, Iran | ||
چکیده [English] | ||
In cold-sensitive products, low temperatures lead to chilling injuries. Under chilling stress conditions, the production of reactive oxygen species increases and causes oxidative stress. Plants have developed an efficient antioxidant defense system to prevent the accumulation and elimination of reactive oxygen species. With the aim of investigating the antioxidant activity of melons under low temperature conditions, seven melon genotypes including 4 parents (Abadan, Khatouni, Dudaim and Japan) and 3 hybrids (Khatouni×Abadan, Dudaim×Khatoni and Japan× Khatouni) were cultivated in the Horticultural Science Research Center, University of Tehran, Karaj, in the years 2018 and 2019. After harvesting, the fruits were kept at three temperatures (1, 4 and 13° C) for thirty days. The results of the research showed that the firmness of the tissue and the total soluble solids were higher in the samples of Japan and Japan×Khatouni genotypes compared to other melons. Also, Japan and Japan×Khatouni genotypes showed the lowest chilling index (10% and 8% respectively) after thirty days. The lowest firmness and soluble solids and the highest malondialdehyde content was found in Dudaim×Khatouni genotype and the highest chilling index (45%) was seen in Khatouni × Abadan genotype. The amount of activity of antioxidant enzymes (catalase, peroxidase and superoxide dismutase) was higher in melons that had a lower chilling index. The highest activity of antioxidant enzymes was seen in Japan and Japan×Khatouni genotypes. It seems that the elevated levels of catalase, peroxidase, and superoxide dismutase enzymes contribute to improving cold resistance in these samples of melon. Japan and Japan×Khatouni are recommended as genotypes with high durability and shelf life (up to 30 days) at low temperatures conditions. | ||
کلیدواژهها [English] | ||
Active oxygen, Chilling, Hybrid, Melon, Storage | ||
مراجع | ||
دامیار, سیما و دستجردی, رعنا. (1393). تغییرات کیفیت میوه سیب رقم گالا در مرحله رسیدگی و مدت انبارمانی. یافتههای تحقیقاتی در گیاهان زراعی و باغی، 3(3)، 179-189. REFRENCESAlabboud, M., Soltani, F. & Kalantari, S. (2022). Expression of CMe-ACS1 and ethylene receptor genes in melon F1 progenies under cold storage condition. Journal of Agricultural Science and Technology, 24 (6),1443-1456. Alabboud, M., Kalantari, S., & Soltani, F. (2020). Analysis of general and specific combining ability of postharvest attributes in melon. Journal of Agricultural Science and Technology, 22(6), 1523-1535. Alabboud, M., Kalantari, S., & Soltani, F. (2022). Postharvest performance interpretation and storage temperature optimization in some newly introduced melon hybrids. Advances in Horticultural Science, 36(1), 27-36. Bassal, M., & El-Hamahmy, M. (2011). Hot water dip and preconditioning treatments to reduce chilling injury and maintain postharvest quality of Navel and Valencia oranges during cold quarantine. Postharvest Biology and Technology, 60(3), 186-191. Beaulieu, J. C., & Lea, J. M. (2007). Quality changes in cantaloupe during growth, maturation, and in stored fresh-cut cubes prepared from fruit harvested at various maturities. Journal of the American Society for Horticultural Science, 132(5), 720-728. Borsani, J., Budde, C. O., Porrini, L., Lauxmann, M. A., Lombardo, V. A., Murray, R., Andreo, C. S., Drincovich, M. F., & Lara, M. V. (2009). Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. Journal of Experimental Botany, 60(6), 1823-1837. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. Brummell, D. A., & Harpster, M. H. (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology, 47, 311-339. Cao, S., Yang, Z., Cai, Y., & Zheng, Y. (2011). Fatty acid composition and antioxidant system in relation to susceptibility of loquat fruit to chilling injury. Food Chemistry, 127(4), 1777-1783. Carvajal, F., Rosales, R., Palma, F., Manzano, S., Cañizares, J., Jamilena, M., & Garrido, D. (2018). Transcriptomic changes in Cucurbita pepo fruit after cold storage: differential response between two cultivars contrasting in chilling sensitivity. BMC Genomics, 19(125), 1-16. Damyar, S., & Dastjerdi, R.(2014). Evaluation of fruit quality changes in apple cultivar Gala, related to ripening stage and storage time. Research achievement for field and horticultural crops, 3,3 (3), 179-189. (In Persian) Dhindsa, R. S., Plumb-Dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1), 93-101. Eduardo, I., Arús, P., Monforte, A. J., Obando, J., Fernández-Trujillo, J. P., Martínez, J. A., Alarcón, A. L., Álvarez, J. M., & van der Knaap, E. (2007). Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. Journal of the American Society for Horticultural Science, 132(1), 80-89. Fallik, E., Shalom, Y., Alkalai-Tuvia, S., Larkov, O., Brandeis, E., & Ravid, U. (2005). External, internal and sensory traits in Galia-type melon treated with different waxes. Postharvest Biology and Technology, 36(1), 69-75. FAOSTAT (2021). Food and Agriculture Organization of the United Nations In FAO. Rome, Italy Fernández-Trujillo, J. P., Obando-Ulloa, J. M., Martínez, J. A., Moreno, E., García-Mas, J., & Monforte, A. J. (2008). Climacteric and non-climacteric behavior in melon fruit: 2. Linking climacteric pattern and main postharvest disorders and decay in a set of near-isogenic lines. Postharvest Biology and Technology, 50(2-3), 125-134. Fogelman, E., Kaplan, A., Tanami, Z., & Ginzberg, I. (2011). Antioxidative activity associated with chilling injury tolerance of muskmelon (Cucumis melo L.) rind. Scientia Horticulturae, 128(3), 267-273. Garcia-Pastor, M. E., Serrano, M., Guillen, F., Zapata, P. J., & Valero, D. (2020). Preharvest or a combination of preharvest and postharvest treatments with methyl jasmonate reduced chilling injury, by maintaining higher unsaturated fatty acids, and increased aril colour and phenolics content in pomegranate. Postharvest Biology and Technology, 167, 111226. Ge, W., Kong, X., Zhao, Y., Wei, B., Zhou, Q., & Ji, S. (2019). Insights into the metabolism of membrane lipid fatty acids associated with chilling injury in post-harvest bell peppers. Food Chemistry, 295, 26-35. Ghafir, S. A. (2009). Physiological and anatomical comparison between four different apple cultivars under cold-storage conditions. Acta Biologica Szegediensis, 53(1), 21-26. Gil, M. I., Tomás-Barberán, F. A., Hess-Pierce, B., Holcroft, D. M., & Kader, A. A. (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food Chemistry, 48(10), 4581-4589. Habibi, F., Ramezanian, A., Guillén, F., Martínez-Romero, D., Serrano, M., & Valero, D. (2020). Susceptibility of blood orange cultivars to chilling injury based on antioxidant system and physiological and biochemical responses at different storage temperatures. Foods, 9(11), 1609. Habibi, F., Ramezanian, A., Rahemi, M., Eshghi, S., Guillén, F., Serrano, M., & Valero, D. (2019). Postharvest treatments with γ‐aminobutyric acid, methyl jasmonate, or methyl salicylate enhance chilling tolerance of blood orange fruit at prolonged cold storage. Journal of the Science of Food and Agriculture, 99(14), 6408-6417. Hammerschmidt, R., Nuckles, E., & Kuć, J. (1982). Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological Plant Pathology, 20(1), 73-82. Huang, S., Bi, Y., Li, H., Liu, C., Wang, X., Wang, X., Lei, Y., Zhang, Q., & Wang, J. (2023). Reduction of membrane lipid metabolism in postharvest Hami melon fruits by n-butanol to mitigate chilling injury and the cloning of phospholipase D-β gene. Foods, 12(9), 1904. Imahori, Y., Bai, J., & Baldwin, E. (2016). Antioxidative responses of ripe tomato fruit to postharvest chilling and heating treatments. Scientia Horticulturae, 198, 398-406. Iqbal, M., Bibi, F., Naeem, M., Khan, M., & Khan, R. (2019). Effect of various temperatures on the postharvest quality and storage life of persimmon fruit. Journal of Postharvest Technology, 7, 9-24. Liu, Y., Jiang, H., Zhao, Z., & An, L. (2010). Nitric oxide synthase like activity-dependent nitric oxide production protects against chilling-induced oxidative damage in Chorispora bungeana suspension cultured cells. Plant Physiology and Biochemistry, 48(12), 936-944. Lozano-Juste, J., Alrefaei, A. F., & Rodriguez, P. L. (2020). Plant osmotic stress signaling: MAPKKKs meet SnRK2s. Trends in Plant Science, 25(12), 1179-1182. Lu, J., Charles, M. T., Vigneault, C., Goyette, B., & Raghavan, G. V. (2010). Effect of heat treatment uniformity on tomato ripening and chilling injury. Postharvest Biology and Technology, 56(2), 155-162. Megías, Z., Martínez, C., Manzano, S., García, A., del Mar Rebolloso-Fuentes, M., Valenzuela, J. L., Garrido, D., & Jamilena, M. (2016). Ethylene biosynthesis and signaling elements involved in chilling injury and other postharvest quality traits in the non-climacteric fruit of zucchini (Cucurbita pepo). Postharvest Biology and Technology, 113, 48-57. Mo, Y., Gong, D., Liang, G., Han, R., Xie, J., & Li., W. (2008). Enhanced preservation effects of sugar apple fruits by salicylic acid treatment during post‐harvest storage. Journal of the Science of Food and Agriculture, 88(15), 2693-2699. Nahar, K., Hasanuzzaman, M., Alam, M., & Fujita, M. (2015). Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean. Biologia Plantarum, 59, 745-756. Nasr, F., Razavi, F., Rabiei, V., Gohari, G., Ali, S., & Hano, C. (2022). Attenuation of chilling injury and improving antioxidant capacity of persimmon fruit by arginine application. Foods, 11(16), 2419. Ning, M., Tang, F., Zhang, Q., Zhao, X., Yang, L., Cai, W., & Shan, C. (2019). The quality of Gold Queen Hami melons stored under different temperatures. Scientia Horticulturae, 243, 140-147. Patel, B., Tandel, Y., Patel, A., & Patel, B. (2016). Chilling injury in tropical and subtropical fruits: A cold storage problem and its remedies: A review. International Journal of Science, Environment and Technology, 5(4), 1882-1887. Pech, J.-C., Bouzayen, M., & Latché, A. (2008). Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. PlantScience, 175(1-2), 114-120. Perpiñá, G., Esteras, C., Gibon, Y., Monforte, A. J., & Picó, B. (2016). A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biology, 16(1), 1-21. Pesis, E., Ackerman, M., Ben-Arie, R., Feygenberg, O., Feng, X., Apelbaum, A., Goren, R., & Prusky, D. (2002). Ethylene involvement in chilling injury symptoms of avocado during cold storage. Postharvest Biology and Technology, 24(2), 171-181. Pinhero, R. G., Rao, M. V., Paliyath, G., Murr, D. P., , & Fletcher., R. A. (1997). Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. Plant Physiology, 114(2), 695-704. Posmyk, M. M., Bailly, C., Szafrańska, K., Janas, K. M., & Corbineau, F. (2005). Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr.) seedlings. Journal of Plant Physiology, 162(4), 403-412. Saladié, M., Cañizares, J., Phillips, M. A., Rodriguez-Concepcion, M., Larrigaudière, C., Gibon, Y., Stitt, M., Lunn, J. E., & Garcia-Mas, J. (2015). Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genomics, 16(1), 1-20. Sevillano, L., Sanchez‐Ballesta, M. T., Romojaro, F., & Flores, F. B. (2009). Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. Journal of the Science of Food and Agriculture, 89(4), 555-573. Shajari, M., Soltani, F., Bihamta, M. R., & Alabboud, M. (2021). Genetic analysis and inheritance of floral and fruit traits in melon (Cucumis melo) in the full diallel cross. Plant Breeding, 140(3), 486-496. Shu, P., Min, D., Ai, W., Li, J., Zhou, J., Li, Z., Zhang, X., Shi, Z., Sun, Y., & Jiang, Y. (2020). L-Arginine treatment attenuates postharvest decay and maintains quality of strawberry fruit by promoting nitric oxide synthase pathway. Postharvest Biology and Technology, 168, 111253. Song, L., Gao, H., Chen, H., Mao, J., Zhou, Y., Chen, W., & Jiang, Y. (2009). Effects of short-term anoxic treatment on antioxidant ability and membrane integrity of postharvest kiwifruit during storage. Food Chemistry, 114(4), 1216-1221. Supapvanich, S., Boon-Lha, K., & Mhernmee, N. (2011). Quality attribute changes in intact and fresh-cut honeydew melon (Cucumis melo var. inodorus) cv.‘Honey World’during storage. Kasetsart Journal - Natural Science, 45(5), 874-882. Surówka, E., Potocka, I., Dziurka, M., Wróbel-Marek, J., Kurczyńska, E., Żur, I., Maksymowicz, A., Gajewska, E., & Miszalski, Z. (2020). Tocopherols mutual balance is a key player for maintaining Arabidopsis thaliana growth under salt stress. Plant Physiology and Biochemistry, 156, 369-383. Suzuki, N., & Mittler, R. (2006). Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia Plantarum, 126(1), 45-51. Tang, C., Xie, J., Lv, J., Li, J., Zhang, J., Wang, C., & Liang, G. (2021). Alleviating damage of photosystem and oxidative stress from chilling stress with exogenous zeaxanthin in pepper (Capsicum annuum L.) seedlings. Plant Physiology and Biochemistry, 162, 395-409. Veraverbeke, E. A., Verboven, P., Van Oostveldt, P., & Nicolaı̈, B. M. (2003). Prediction of moisture loss across the cuticle of apple (Malus sylvestris subsp. Mitis (Wallr.) during storage: part 1. Model development and determination of diffusion coefficients. Postharvest Biology and Technology, 30(1), 75-88. Villanueva, M., Tenorio, M., Esteban, M., & Mendoza, M. (2004). Compositional changes during ripening of two cultivars of muskmelon fruits. Food Chemistry, 87(2), 179-185. Wang, J., Mao, L.C., Li, X.W., Lv, Z., Liu, C.H,., Huang, Y.Y., & Li, D.D. (2018). Oxalic acid pretreatment reduces chilling injury in Hami melons (Cucumis melo var. reticulatus Naud.) by regulating enzymes involved in antioxidative pathways. Scientia Horticulturae, 241, 201-208. Wang, J., Zhang, Z., Wu, J., Han, X., Wang-Pruski, G., & Zhang, Z. (2020). Genome-wide identification, characterization, and expression analysis related to autotoxicity of the GST gene family in Cucumis melo L. Plant Physiology and Biochemistry, 155, 59-69. Wang, Y.-S., Tian, S.-P., & Xu, Y. (2005). Effects of high oxygen concentration on pro-and anti-oxidant enzymes in peach fruits during postharvest periods. Food Chemistry, 91(1), 99-104. Wang, Y., Ji, S., Dai, H., Kong, X., Hao, J., Wang, S., Zhou, X., Zhao, Y., Wei, B., & Cheng, S. (2019). Changes in membrane lipid metabolism accompany pitting in blueberry during refrigeration and subsequent storage at room temperature. Frontiers in Plant Science, 10, 829. Yadav, S. K. (2010). Cold stress tolerance mechanisms in plants. A review. Agronomy for Sustainable Development, 30(3), 515-527. Yang, J., FU, M. R., Zhao, Y. Y., & Mao L. C. (2009). Reduction of chilling injury and ultrastructural damage in cherry tomato fruits after hot water treatment. Agricultural Sciences in China, 8(3), 304-310. Zhang, T., Che, F., Zhang, H., Pan, Y., Xu, M., Ban, Q., Han, Y., & Rao, J. (2017a). Effect of nitric oxide treatment on chilling injury, antioxidant enzymes and expression of the CmCBF1 and CmCBF3 genes in cold-stored Hami melon (Cucumis melo L.) fruit. Postharvest Biology and Technology, 127, 88-98. Zhang, T., Zhang, Q., Pan, Y., Che, F., Wang, Q., Meng, X., & Rao, J. (2017b). Changes of polyamines and CBFs expressions of two Hami melon (Cucumis melo L.) cultivars during low temperature storage. Scientia Horticulturae, 224, 8-16. Zheng, Y., Fung, R. W., Wang, S. Y., & Wang, C. Y. (2008). Transcript levels of antioxidative genes and oxygen radical scavenging enzyme activities in chilled zucchini squash in response to superatmospheric oxygen. Postharvest Biology and Technology, 47(2), 151-158. | ||
آمار تعداد مشاهده مقاله: 251 تعداد دریافت فایل اصل مقاله: 322 |