تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,117,336 |
تعداد دریافت فایل اصل مقاله | 97,222,858 |
اثر محلولپاشی سینامیک اسید بر ترکیبات زیستفعال میوه انار رقم رباب نیریز | ||
علوم باغبانی ایران | ||
دوره 55، شماره 2، تیر 1403، صفحه 257-272 اصل مقاله (1.52 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2024.367762.2130 | ||
نویسندگان | ||
اسماعیل صادقی1؛ مصباح بابالار* 1؛ محمدرضا فتاحی مقدم2؛ محمدعلی عسگری سرچشمه1 | ||
1گروه علوم و مهندسی باغبانی و فضای سبز، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران. | ||
2گروه علوم و مهندسی باغبانی و فضای سبز، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
میوه انار به دلیل دارا بودن مواد آنتیاکسیدانی بالا نقش مهمی در حفظ سلامت انسان دارد. محرکهای زیستی ترکیبات طبیعی و سازگار با طبیعت هستند که با تحریک فرآیندهای گیاهی موجب افزایش کیفیت محصول میشوند. پژوهش حاضر به منظور ارزیابی اثر محلولپاشی سینامیک اسید (صفر، 1، 5 و 10 میلیمولار) در سه مرحله (20، 40 و 60 روز قبل از برداشت) بر بهبود کیفیت تغذیهای انار انجام شد. این تحقیق روی درختان 15 ساله انار رقم رباب در یک باغ تجاری انار واقع در شهرستان نیریز استان فارس در قالب طرح بلوکهای کامل تصادفی با سه تکرار و در طی سالهای 1398 و 1399 اجرا شد. محلولپاشی سینامیک اسید در مرحله قبل از برداشت تأثیر معنیداری بر شاخصهای کیفی و ترکیبات زیستفعال میوههای انار داشت. نتایج نشان داد که تیمار سینامیک اسید باعث افزایش میزان مواد جامد محلول (44/8 درصد نسبت به شاهد)، اسیدیته قابل تیتراسیون (33/35 درصد نسبت به شاهد) و ویتامین ث (45/48 درصد نسبت به شاهد) شد. بر اساس نتایج بدست آمده از این پژوهش سینامیک اسید باعث افزایش فعالیت آنزیم PAL شد که منجر به افزایش معنیدار ترکیبهای آنتیاکسیدانی مثل فنل کل (83/22 و 15/26 درصد به ترتیب در سالهای 1398 و 1399)، آنتوسیانین کل (21/75 و 63/66 درصد به ترتیب در سالهای 1398 و 1399) و فلاونوئید کل (66/37 درصد) نسبت به شاهد شد. بنابراین، محلولپاشی قبل از برداشت با سینامیک اسید 10 میلیمولار جهت بهبود ترکیبات زیستفعال و افزایش کیفیت تغذیهای میوه انار پیشنهاد میشود. | ||
کلیدواژهها | ||
سینامیک اسید؛ محرک زیستی؛ آنزیم PAL؛ ترکیبات زیستفعال | ||
عنوان مقاله [English] | ||
The Effect of Foliar Spraying of Cinnamic Acid on the Bioactive Compounds of ‘Rabab-e Neyriz’ Pomegranate Fruit | ||
نویسندگان [English] | ||
Esmaeil Sadeghi1؛ Mesbah Babalar1؛ Reza Fatahi2؛ Mohammad Ali Askari Sarcheshmeh1 | ||
1Department of Horticulture and Landscape Architecture, Faculty of Agriculture, University of Tehran, Karaj, Iran. | ||
2Department of Horticulture and Landscape Architecture, Faculty of Agriculture, University of Tehran, Karaj, Iran. | ||
چکیده [English] | ||
Pomegranate fruit has an important role in maintaining human health due to its high antioxidant content. Biostimulants are natural and ecological friendly compounds that increase the quality of the product by stimulating plant processes. The aim of this study was to investigate the effect of foliar application of cinnamic acid (0, 1, 5 and 10 mM) at three stages (20, 40 and 60 days before harvest) on improving the nutritional quality of pomegranate. This research was carried out on 15-year-old pomegranate trees of Rabab cultivar in a commercial pomegranate orchard located in Neyriz city of Fars province, in a randomized complete block design with three replications during the years 2019 and 2020. Foliar application of cinnamic acid in the pre-harvest stages had a significant effect on the quality traits and bioactive compounds of pomegranate fruits. The results indicated that cinnamic acid treatment increased the amount of total soluble solids (8.44% compared to the control), titratable acidity (35.33% compared to the control) and vitamin C (48.45% compared to the control). Based on the results obtained from this research, cinnamic acid increased phenylalanine ammonia-lyase enzyme activity, which led to a significant increase in the antioxidant characteristics such as total phenol (22.83% and 26.15% in 2018 and 2019, respectively), total anthocyanin (75.21% and 66.63% in 2018 and 2019, respectively) and total flavonoid (37.66%) compared to the control. Therefore, foliar application of 10 mM cinnamic acid before harvesting is suggested to improve the bioactive compounds and increase the nutritional quality of pomegranate fruit. | ||
کلیدواژهها [English] | ||
Cinnamic acid, Biostimulant, PAL enzyme, Bioactive compounds | ||
مراجع | ||
دارابی، زهرا؛ قنبری، فردین و عرفانی مقدم، جواد. (1401). اثر سینامیک اسید بر خصوصیات مورفوفیزیولوژیکی نشاء خیار تحت تنش سرما. مجله علوم باغبانی، 36 (3)، 630-619. محققیان، الهام؛ و احسانپور، علیاکبر. (1400). اثر سینامیک اسید بر میزان فعالیت آنزیمهای فنیل آلانین آمونیالیاز(PAL) و تیروزین آمونیالیاز (TAL) و برخی خصوصیات فیزیولوژیکی گیاه تنباکو Nicotiana rustica L. تحت شرایط تنش شوری کشت در شیشه. مجله سلول و بافت، 12 (2)، 102-88. REFERENCES AOAC (2005). Official Methods of Analysis. Association of Official Analytical Chemists. Washington D.C. U.S.A. Araniti, F., Lupini, A., Mauceri, A., Zumbo, A., Sunseri, F., & Abenavoli, M. R. (2018). The allelochemical trans-cinnamic acid stimulates salicylic acid production and galactose pathway in maize leaves: A potential mechanism of stress tolerance. Plant Physiology and Biochemistry, 128, 32-40. Babalar, M., Pirzad, F., Sarcheshmeh, M. A. A., Talaei, A., & Lessani, H. (2018). Arginine treatment attenuates chilling injury of pomegranate fruit during cold storage by enhancing antioxidant system activity. Postharvest Biology and Technology, 137, 31-37. Blount, J. W., Korth, K. L., Masoud, S. A., Rasmussen, S., Lamb, C., & Dixon, R. A. (2000). Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiology, 122(1), 107-116. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. Caruso, G., Villari, G., & Impembo, M. (2002). Effect of nutritive solution K: N and shading on the" fruit" quality of NFT-grown strawberry. In Acta Horticulturae VI International Symposium on Protected Cultivation in Mild Winter Climate: Product and Process Innovation 614 (pp. 727-734). Chen, J. Y., Wen, P. F., Kong, W. F., Pan, Q. H., Zhan, J. C., Li, J. M., ... & Huang, W. D. (2006). Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biology and Technology, 40(1), 64-72. Christian, M., Steffens, B., Schenck, D., Burmester, S., Böttger, M., & Lüthen, H. (2006). How does auxin enhance cell elongation? Roles of auxin-binding proteins and potassium channels in growth control. Plant Biology, 8(3), 346-352. Darabi, Z., Ghanbari, F., & Erfani moghadam, J. (2022). Effect of Cinnamic Acid on Morphophysiological Characteristics of Cucumber Seedling under Chilling Stress. Journal of Horticultural Science, 36(3), 619-630. (In Persian) Da Silva, J. A. T., Rana, T. S., Narzary, D., Verma, N., Meshram, D. T., & Ranade, S. A. (2013). Pomegranate biology and biotechnology: a review. Scientia Horticulturae, 160, 85-107. Dixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. The Plant Cell, 7(7), 1085-1097. Drobek, M., Frąc, M., & Cybulska, J. (2019). Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A review. Agronomy, 9(6), 335. Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. El-Shora, H. M. (2002). Properties of phenylalanine ammonia-lyase from marrow cotyledons. Plant Science, 162(1), 1-7. Gao, Y., Liu, W., Wang, X., Yang, L., Han, S., Chen, S., & Qiang, S. (2018). Comparative phytotoxicity of usnic acid, salicylic acid, cinnamic acid and benzoic acid on photosynthetic apparatus of Chlamydomonas reinhardtii. Plant Physiology and Biochemistry, 128, 1-12. Graham, S. A., Hall, J., Sytsma, K., & Shi, S. H. (2005). Phylogenetic analysis of the Lythraceae based on four gene regions and morphology. International Journal of Plant Sciences, 166(6), 995-1017. Hayat, S., Ali, B., & Ahmad, A. (2007). Salicylic acid: biosynthesis, metabolism and physiological role in plants. In Salicylic acid: A plant hormone, (pp. 1-14). Springer, Dordrecht. Hiratsuka, S., Onodera, H., Kawai, Y., Kubo, T., Itoh, H., & Wada, R. (2001). ABA and sugar effects on anthocyanin formation in grape berry cultured in vitro. Scientia Horticulturae, 90(1-2), 121-130. Hu, Y. H., Chen, C. M., Xu, L., Cui, Y., Yu, X. Y., Gao, H. J., ... & Chen, Q. X. (2015). Postharvest application of 4-methoxy cinnamic acid for extending the shelf life of mushroom (Agaricus bisporus). Postharvest Biology and Technology, 104, 33-41. Karadağ, B., & Yücel, N. C. (2017). Cinnamic acid and fish flour affect wheat phenolic acids and flavonoid compounds, lipid peroxidation, proline levels under salt stress. Acta Biologica Hungarica, 68(4), 388-397. Kashash, Y., Mayuoni-Kirshenbaum, L., Goldenberg, L., Choi, H. J., & Porat, R. (2016). Effects of harvest date and low-temperature conditioning on chilling tolerance of ‘Wonderful’ pomegranate fruit. Scientia Horticulturae, 209, 286-292. Kurepa, J., Shull, T. E., Karunadasa, S. S., & Smalle, J. A. (2018). Modulation of auxin and cytokinin responses by early steps of the phenylpropanoid pathway. BMC Plant Biology, 18, 1-15. Lemoine, M. L., Civello, P. M., Martínez, G. A., & Chaves, A. R. (2007). Influence of postharvest UV‐C treatment on refrigerated storage of minimally processed broccoli (Brassica oleracea var. Italica). Journal of the Science of Food and Agriculture, 87(6), 1132-1139. Li, J., Li, H., Ji, S., Chen, T., Tian, S., & Qin, G. (2019). Enhancement of biocontrol efficacy of Cryptococcus laurentii by cinnamic acid against Penicillium italicum in citrus fruit. Postharvest Biology and Technology, 149, 42-49. Lin, C. Y., Chung, H. H., Kuo, C. T., & Yiu, J. C. (2020). Exogenous cinnamic acid alleviates salinity-induced stress in sweet pepper (Capsicum annuum L.) seedlings. New Zealand Journal of Crop and Horticultural Science, 48(3), 164-182. Mehrtens, F., Kranz, H., Bednarek, P., & Weisshaar, B. (2005). The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiology. 138(2), 1083–1096. Miguel, G., Fontes, C., Antunes, D., Neves, A., & Martins, D. (2004). Anthocyanin concentration of “Assaria” pomegranate fruits during different cold storage conditions. Journal of Biomedicine and Biotechnology, 2004(5), 338. Mohagheghian, E., & Ehsan Pour, A. (2021). Effect of Cinnamic acid on the activity of phenylalanine ammonialyase (PAL) and tyrosine ammonialyase (TAL) enzymes and some physiological characteristics of tobacco plant (Nicotiana rustica L.) under salinity stress in vitro calture. Cell and Tissue Journal, 12(2), 88-102. (In Persian). Nasr, F., Pateiro, M., Rabiei, V., Razavi, F., Formaneck, S., Gohari, G., & Lorenzo, J. M. (2021). Chitosan-phenylalanine nanoparticles (Cs-Phe Nps) extend the postharvest life of persimmon (Diospyros kaki) fruits under chilling stress. Coatings, 11(7), 819. Nava, G., Dechen, A. R., & Nachtigall, G. R. (2007). Nitrogen and potassium fertilization affect apple fruit quality in southern Brazil. Communications in Soil Science and Plant Analysis, 39(1-2), 96-107. Niazi, Z., Razavi, F., Khademi, O., & Aghdam, M. S. (2021). Exogenous application of hydrogen sulfide and γ-aminobutyric acid alleviates chilling injury and preserves quality of persimmon fruit (Diospyros kaki, cv. Karaj) during cold storage. Scientia Horticulturae, 285, 110198. Pagariya, M. C., Devarumath, R. M., & Kawar, P. G. (2012). Biochemical characterization and identification of differentially expressed candidate genes in salt stressed sugarcane. Plant Science, 184, 1-13. Politycka, B. (1996). Peroxidase activity and lipid peroxidation in roots of cucumber seedlings influenced by derivatives of cinnamic and benzoic acids. Acta Physiologiae Plantarum, 18(4), 365-370. Rahmawati, S., & Bundjali, B. (2012). Kinetics of the oxidation of vitamin C. Indonesian Journal of Chemistry, 12(3), 291-296. Rouphael, Y., & Colla, G. (2018). Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1655. Shourie, A. (2016). Cinnamic acid Supplementation Regulates the Production of Licochalcone A Liquirtigenin and Licoisoflavone B in callus cultures of Glycyrrhiza glabra. International Journal of Phytomedicine, 8(3), 343-345. Singh, P. K., Chaturvedi, V. K., & Singh, H. B. (2011). Cross talk signalling: an emerging defense strategy in plants. Current Science, 100(3), 288-289. Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152-178. Tristantini, D., & Amalia, R. (2019). Quercetin concentration and total flavonoid content of anti-atherosclerotic herbs using aluminum chloride colorimetric assay. AIP Conference Proceedings, 2193(1). AIP Publishing. Wang, H., Cao, G., & Prior, R. L. (1996). Total antioxidant capacity of fruits. Journal of Agricultural and Food Chemistry, 44(3), 701-705. Wettasinghe, M., & Shahidi, F. (2000). Scavenging of reactive-oxygen species and DPPH free radicals by extracts of borage and evening primrose meals. Food Chemistry, 70, 17–26. Zhang, Z., Qin, G., Li, B., & Tian, S. (2015). Effect of cinnamic acid for controlling gray mold on table grape and its possible mechanisms of action. Current Microbiology, 71(3), 396-402. | ||
آمار تعداد مشاهده مقاله: 171 تعداد دریافت فایل اصل مقاله: 116 |