- Bozorg-Haddad, O., Delpasand, M., & Loáiciga, H. A. (2020). Self-optimizer data-mining method for aquifer level prediction. Water supply, 20(2), 724-736.
- Bahmani, R., & Ouarda, T. B. (2021). Groundwater level modeling with hybrid artificial intelligence techniques. Journal of Hydrology, 595, 125659.
- Chen, C., He, W., Zhou, H., Xue, Y., & Zhu, M. (2020). A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China. Scientific reports, 10(1), 3904.
- Coggin, T. D., & Hunter, J. E. (1983). Problems in measuring the quality of investment information: The perils of the information coefficient. Financial Analysts Journal, 39(3), 25-33.
- Cao, Y., Yin, K., Zhou, C., & Ahmed, B. (2020). Establishment of landslide groundwater level prediction model based on GA-SVM and influencing factor analysis. Sensors, 20(3), 845.
- Di Nunno, F., & Granata, F. (2020). Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network. Environmental Research, 190, 110062.
- Daneshwar Voshoghi, F., & Karimi, A. (2017). Using SOM preprocessing methods and wavelet transform in predicting the underground water level (case study: Azarshahr Plain). Hydrogeology, 3(1), 15-31. (inPersian).
- ElHaj, K., Issa, S., Alshamsi, D., & Cherkose, B. A. (2023). Modeling and Prediction of Groundwater Level Fluctuations Using Geoinformatics and Artificial Neural Networks in Al Ain City, UAE. In Water Resources Management and Sustainability: Solutions for Arid Regions, 205-217.
- Evans, S. W., Jones, N. L., Williams, G. P., Ames, D. P., & Nelson, E. J. (2020). Groundwater Level Mapping Tool: An open-source web application for assessing groundwater sustainability. Environmental Modelling & Software, 131, 104782.
- Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., ... & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2(1), 1-21.
- Gleeson, T., Alley, W.M., Allen, D.M., Sophocleous, M.A., Zhou, Y., Taniguchi, M., VanderSteen, J. (2012). Towards sustainable groundwater use: Setting long-term goals, backcasting, and managing adaptively. Groundwater, 50, 19-26.
- Ghose, D. K., Panda, S. S., & Swain, P. C. (2010). Prediction of water table depth in western region, Orissa using BPNN and RBFN neural networks. Journal of hydrology, 394(3-4), 296-304.
- García-Santos, G., Scheiber, M., & Pilz, J. (2020). Spatial interpolation methods to predict airborne pesticide drift deposits on soils using knapsack sprayers. Chemosphere, 258, 127231.
- Gemitzi, A., & Stefanopoulos, K. (2011). Evaluation of the effects of climate and man intervention on ground waters and their dependent ecosystems using time series analysis. J. Hydrol, 403, 130-140.
- Ghahrodi Tali, M. (2002). Evaluation of forecasting by kriging method. Geographical Research, 34(43), 95-108. (in Persian).
- Hasda, R., Rahaman, M. F., Jahan, C. S., Molla, K. I., & Mazumder, Q. H. (2020). Climatic data analysis for groundwater level simulation in drought prone Barind Tract, Bangladesh: Modelling approach using artificial neural network. Groundwater for sustainable development, 10, 100361.
- Iqbal, M., Naeem, U. A., Ahmad, A., Ghani, U., & Farid, T. (2020). Relating groundwater levels with meteorological parameters using ANN technique. Measurement, 166, 108163.
- Jalalkamali, A., Sedghi, H., & Manshouri, M. (2011). Monthly groundwater level prediction using ANN and neuro-fuzzy models: a case study on Kerman plain, Iran. Journal of hydroinformatics, 13(4), 867-876.
- Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685-695.
- Khedri, A., Kalantari, N., & Vadiati, M. (2020). Comparison study of artificial intelligence method for short term groundwater level prediction in the northeast Gachsaran unconfined aquifer. Water Supply, 20(3), 909-921.
- Kamińska, A., & Grzywna, A. (2014). Comparison of deteministic interpolation methods for the estimation of groundwater level. Journal of Ecological Engineering, 15(4), 55-60.
- Khazaz, L., Oulidi, H. J., El Moutaki, S., & Ghafiri, A. (2015). Comparing and Evaluating Probabilistic and Deterministic Spatial Interpolation Methods for Groundwater Level of Haouz in Morocco. Journal of Geographic Information System, 7(06), 76051.
- Khosravi, K., Mao, L., Kisi, O., Yaseen, Z. M., & Shahid, S. (2018). Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile. Hydrol, 567, 165-179.
- Kombo, O. H., Kumaran, S., Sheikh, Y. H., Bovim, A., & Jayavel, K. (2020). Long-term groundwater level prediction model based on hybrid KNN-RF technique. Hydrology, 7(3), 59.
- Khan, J., Lee, E., Balobaid, A. S., & Kim, K. (2023). A Comprehensive Review of Conventional, Machine Leaning, and Deep Learning Models for Groundwater Level (GWL) Forecasting. Applied Sciences, 13(4), 2743.
- Kenda, K., Peternelj, J., Mellios, N., Kofinas, D., Čerin, M., & Rožanec, J. (2020). Usage of statistical modeling techniques in surface and groundwater level prediction. Journal of Water Supply: Research and Technology—AQUA, 69(3), 248-265.
- Kamasi, M. Guderzi, H., & Bahnia, A. (2016). Investigating the trend of spatio-temporal fluctuations of groundwater level using support vector machine (SVM) and kriging (kriging) case study of Silakhor Plain. Journal of water and soil protection research, 24(4), 195-209. (in Persian).
- Li, W., Finsa, M. M., Laskey, K. B., Houser, P., & Douglas-Bate, R. (2023). Groundwater Level Prediction with Machine Learning to Support Sustainable Irrigation in Water Scarcity Regions. Water, 15(19), 3473.
- Li, J., & Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software, 53, 173-189.
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
- Manna, T., & Anitha, A. (2023). Deep Ensemble-Based Approach Using Randomized Low-Rank Approximation for Sustainable Groundwater Level Prediction. Applied Sciences, 13(5), 3210.
- Minderhoud, P., Erkens, G., Pham, V., Bui, V.T., Erban, L., Kooi, H., & Stouthamer, E. (2017). Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Res. Lett, 12, 064006.
- Marchant, B. P., Cuba, D., Brauns, B., & Bloomfield, J. P. (2022). Temporal interpolation of groundwater level hydrographs for regional drought analysis using mixed models. Hydrogeology Journal, 30(6), 1801-1817.
- McCuen, R. H., Knight, Z., & Cutter, A. G. (2006). Evaluation of the Nash–Sutcliffe efficiency index. Journal of hydrologic engineering, 11(6), 597-602.
- Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022). Fundamentals of artificial neural networks and deep learning. In Multivariate statistical machine learning methods for genomic prediction 379-425.
- Malik, A., & Bhagwat, A. (2021). Modelling groundwater level fluctuations in urban areas using artificial neural network. Groundwater for Sustainable Development, 12, 100484.
- Mohanasundaram, S., Suresh Kumar, G., & Narasimhan, B. (2019). A novel deseasonalized time series model with an improved seasonal estimate for groundwater level predictions. H2Open Journal, 2(1), 25-44.
- Malekzadeh, M., Kardar, S., & Shabanlou, S. (2019). Simulation of groundwater level using MODFLOW, extreme learning machine and Wavelet-Extreme Learning Machine models. Groundwater for Sustainable Development, 9, 100279.
- Moghaddam, H. K., Moghaddam, H. K., Kivi, Z. R., Bahreinimotlagh, M., & Alizadeh, M. J. (2019). Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels. Groundwater for Sustainable Development,9, 100237.
- Mohammadi, J. (2006). Pedometry, the second volume of spatial statistics, Palak Publishing House, 453 p. (in Persian).
- Mehdian, M. (2006). The application of geostatistics in soil science, the training workshop on the application of geostatistics in soil science, the first conference on soil, sustainable development and environment, November 17-18, University of Tehran, Tehran, Iran. (in Persian).
- Nhu, V. H., Shahabi, H., Nohani, E., Shirzadi, A., Al-Ansari, N., Bahrami, S., ... & Nguyen, H. (2020). Daily water level prediction of Zrebar Lake (Iran): a comparison between M5P, random forest, random tree and reduced error pruning trees algorithms. ISPRS International Journal of Geo-Information, 9(8), 479.
- Nadiri, A. and Asghari Moghadam, Sh., & Vediati, M. (2013). Evaluation of various interpolation methods to estimate nitrate pollution in underground water sources (case study: Bilourdi plain, East Azerbaijan province). Hydrogeomorphology, 1(1), 75-92. (in Persian).
- Nekoamal Kermani, M., & Mirabbasi Najafabadi, R. (2016). Evaluation of interpolation methods in groundwater level estimation (case study: Serkhon plain). Hydrogeology, 2(2), 84-95. (in Persian).
- Omar, P.J., Gaur, S., Dwivedi, S.B., Dikshit, P.K.S. (2019). Groundwater modelling using an analytic element method and finite difference method: An insight into lower ganga river basin. J. Earth Syst. Sci, 128, 195.
- Quinlan, J. R. (1993, June). Combining instance-based and model-based learning. In Proceedings of the tenth international conference on machine learning, 236-243.
- Rohde, M. M., Biswas, T., Housman, I. W., Campbell, L. S., Klausmeyer, K. R., & Howard, J. K. (2021). A machine learning approach to predict groundwater levels in California reveals ecosystems at risk. Frontiers in Earth Science, 9, 784499.
- Rusk, N. (2016). Deep learning. Nature Methods, 13(1), 35-35.
- Ren, H., Cromwell, E., Kravitz, B., & Chen, X. (2022). Using long short-term memory models to fill data gaps in hydrological monitoring networks. Hydrology and Earth System Sciences, 26(7), 1727-1743.
- Jani, R. (2017). Prioritization of spatial interpolation methods in soil resistance zoning (case study: Shahrak Fazaz). Geographical Space, 18(61), 125-140 (in Persian).
- Sihag, P., Mohsenzadeh Karimi, S., & Angelaki, A. (2019). Random forest, M5P and regression analysis to estimate the field unsaturated hydraulic conductivity. Applied Water Science, 9, 1-9.
- Seifi, A., Ehteram, M., Singh, V. P., & Mosavi, A. (2020). Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN. Sustainability, 12(10), 4023.
- Sayadi Shahraki, A., Boroomand Nasab, S., Naseri, A. A., & Soltani Mohammadi, A. (2021). Estimation of groundwater depth using ANN-PSO, kriging, and IDW models (case study: Salman Farsi Sugarcane Plantation). Central Asian Journal of Environmental Science and Technology Innovation, 2(3), 91-101.
- Sharafati, A., Asadollah, S. B. H. S., & Neshat, A. (2020). A new artificial intelligence strategy for predicting the groundwater level over the Rafsanjan aquifer in Iran. Journal of Hydrology, 591, 125468.
- Shin, M. J., Moon, S. H., Kang, K. G., Moon, D. C., & Koh, H. J. (2020). Analysis of groundwater level variations caused by the changes in groundwater withdrawals using long short-term memory network. Hydrology, 7(3), 64.
- Tao, H., Hameed, M. M., Marhoon, H. A., Zounemat-Kermani, M., Heddam, S., Kim, S., ... & Yaseen, Z. (2022). Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing,489, 271-308.
- Wu, Z., Lu, C., Sun, Q., Lu, W., He, X., Qin, T., ... & Wu, C. (2023). Predicting Groundwater Level Based on Machine Learning: A Case Study of the Hebei Plain. Water, 15(4), 823.
- Yu, H., Yu, C., Ma, Y., Zhao, B., Yue, C., Gao, R., & Chang, Y. (2021). Determining Stress State of Source Media with Identified Difference between Groundwater Level during Loading and Unloading Induced by Earth Tides. Water, 13, 2843.
- Yadav, B., Gupta, P. K., Patidar, N., & Himanshu, S. K. (2020). Ensemble modelling framework for groundwater level prediction in urban areas of India. Science of the Total Environment, 712, 135539.
- Zhang, J., Zhu, Y., Zhang, X., Ye, M., & Yang, J. (2018). Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. Hydrol., 561, 918-929.
|