
تعداد نشریات | 162 |
تعداد شمارهها | 6,692 |
تعداد مقالات | 72,232 |
تعداد مشاهده مقاله | 129,197,685 |
تعداد دریافت فایل اصل مقاله | 102,027,681 |
Protective Effects of Eugenol Against Iron Overload-induced Nephrotoxicity in Male Rats | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 15، دوره 19، شماره 2، تیر 2025، صفحه 341-356 اصل مقاله (6.71 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.19.2.1005540 | ||
نویسندگان | ||
Ahmed M. Malik Al-Mashhadi* ؛ Nabeel Mohammed Al-Sharafi | ||
Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary, Medicine University of Kufa, Kufa, Iraq. | ||
چکیده | ||
Background: Nephrotoxicity is a term used to describe when the renal system suffers from reduced renal function due to both direct and indirect toxin damage caused by exposure to certain drugs. Objectives: This study aimed to investigate the protective effects of eugenol against iron overload (IOL)-induced nephrotoxicity in male rats. Methods: Thirty rats were randomly divided into six equal groups: The first group, control negative C-, received intraperitoneal (IP) injection of distilled water. The second group, control positive C+, received iron dextran only at 100 mg/kg body weight (BW) IP. The third and fourth groups (iron+eugenol [IE]1 and IE2) received iron dextran 100 mg/kg BW IP and eugenol 50,100 mg/kg BW orally, respectively. The fifth and sixth groups (E3 and E4) received eugenol only at 50 100 mg/kg BW orally. Results: The results revealed significant improvements in biomarkers and histological characteristics in rats treated with eugenol compared to those in the control group (C+). Rats treated with eugenol exhibited decreased levels of creatinine, blood urea nitrogen (BUN), malondialdehyde (MDA), erythropoietin (EPO) and kidney injury molecule-1 (KIM-1), along with increased concentrations of glutathione (GSH). Microscopic examination of kidney tissue from the control (C-) and eugenol-treated (E3 and E4) groups showed typical histological features, indicating preserved kidney architecture. In contrast, the control group (C+) showed epithelial cell necrosis in the renal tubules and inflammatory processes, particularly in the glomeruli and interstitial sections of the proximal renal tubules. The (IE1 and IE2) groups exhibited varying degrees of renal damage, with IE1 showing moderate epithelial cell necrosis and inflammation, while IE2 displayed relatively normal cortical architecture with mild inflammatory changes in the medulla. Conclusion: Eugenol ameliorated IOL-induced nephrotoxicity in male rats. | ||
کلیدواژهها | ||
Eugenol؛ Histopathology؛ Iron overload (IOL)؛ Kidney score؛ Nephrotoxicity | ||
اصل مقاله | ||
Introduction
Effects of iron dextran and eugenol administration on ELISA parameters
Rat kidneys of control positive groups (C+) showed necrosis of epithelial cells of the proximal and distal convoluted tubules, leading to spaces in the cortex area. Also, the infiltration of inflammatory cells in the affected cortex area filled the necrotic spaces (Figure 10).
In the medulla, changes in necrosis of epithelial cells of the loop of Henle tubules led to space in the medulla area where inflammatory cells aggregated to form a cluster that occupied the necrotic cell spaces in the spaces of necrotic tissue (Figure 11).
Finally, the rat kidneys treated with iron dextran and eugenol at a dosage of 100 mg/kg BW (IE2) showed normal histological architecture of the proximal and distal convoluted tubules of the cortex area of the kidney (Figure 14) and medulla, mild infiltration of inflammatory cells between the medullary renal tubules of the loop of Henle (Figure 15).
The mechanism influencing the role of eugenol on the level of creatinine involves its multifaceted antioxidant and anti-inflammatory properties on creatinine can explain by which as explain eugenol (Said, 2011; Asker et al., 2021; Fathy et al., 2022), known for its free radical scavenging abilities effectively mitigate oxidative stress and lipid peroxidation in the renal tissue that by eliminating electrons from free radicals and preventing Fe2+ oxidation by H2O2, eugenol inhibit radical (OH-) production, ultimately suppressing lipid peroxidation (Aboelwafa et al., 2022). Additionally, eugenol’s anti-inflammatory actions include the modulation of cytokine levels by suppressing cyclooxygenase II and inhibiting cell proliferation. These combined effects contribute to reducing renal MDA levels, a marker of lipid peroxidation, and positively impact antioxidant defense mechanisms. Although the exact pathways by which eugenol influences creatinine levels may involve a complex interplay of its antioxidant and anti-inflammatory actions, the overall outcome has a significant protective effect on renal function in the context of IOL syndrome-induced renal injury (Bachiega et al., 2012; Aboelwafa et al., 2022; Gharaei et al., 2022). This production may involve crossing the blood-brain barrier to reach the bloodstream and peripheral organs. Hypoxia-inducible factor-la (HIF-1a) plays a pivotal role in the cellular response to hypoxia; hypoxia-induced factor1 controls the expression of EPO and EPOR during periods of reduced oxygen content. Previous studies have suggested that HlF-1a reduces intracellular reactive oxygen species (ROS) levels (Uchewa et al., 2023). Conversely, decreased levels of HlF-1a have been linked to elevated ROS levels, contributing to cell apoptosis in certain tumors. Furthermore, the activity of HlF-1a is influenced by the concentration of iron, a cofactor of the prolyl hydroxylase domain 2 (PHD2). PHD2 is an essential hydroxylase involved in oxygen sensing in HlF-1a cells. Excess iron impacts oxygen-sensing machinery, particularly HIF-la. HIF-1a is a crucial sensing regulator that responds to low oxygen conditions, and iron availability modulates its activity (Abed Al-Kareem et al., 2022). Iron serves as a cofactor for PHD2, an essential enzyme responsible for the degradation of HIF-la. When iron is abundant, PHD2 is activated, leading to the degradation of HIF-la and, consequently, a decrease in EPO production. Conversely, under conditions of iron deficiency or low iron availability, reduced PHD2 activity allows HIF-la to accumulate, stimulating EPO production as a compensatory response to low oxygen levels (Zheng et al., 2017; Hu et al., 2020).
Abdel-Magied, N., Elkady, A. A., & Abdel Fattah, S. M. (2020). Effect of low-level laser on some metals related to redox state and histological alterations in the liver and kidney of irradiated rats. Biological Trace Element Research, 194(2), 410–422.[DOI:10.1007/s12011-019-01779-3][PMID] Abdul AL-Abbas, A. A. H., & Mlaghee, S. M. (2023). Therapeutic effect of curcumin on dermatitis induced by acetone in female rats. Kufa Journal for Veterinary Medical Sciences, 14(2), 1. [Link] Aboelwafa, H. R., Ramadan, R. A., Ibraheim, S. S., & Yousef, H. N. (2022). Modulation effects of eugenol on nephrotoxicity triggered by silver nanoparticles in adult rats. Biology, 11(12), 1719. [DOI:10.3390/biology11121719][PMID] Adli, D. E. H., Ziani, K., Kourat, D., Brahmi, M., Souidi, S. A., & Naar, A., et al. (2022). Ameliorative effect of the essential oil of syzygium aromaticum in wistars rats exposed to aluminum chloride. Egyptian Academic Journal of Biological Sciences. C, Physiology and Molecular Biology, 14(2), 403-413. [DOI:10.21608/eajbsc.2022.277234] Alpert, A. J., & Gilbert, H. F. (1985). Detection of oxidized and reduced glutathione with a recycling postcolumn reaction. Analytical Biochemistry, 144(2), 553–562. [DOI:10.1016/0003-2697(85)90153-8][PMID] Al-Sharafi, N. M., & Al-Sharafi, M. R. (2014). Study the effects of ginger (Zingiber officinale) extract on serum lipid in hypothyroidism male rats induce by propylthiouracil. Kufa Journal for Veterinary Medical Sciences, 5(2), 258-266. [DOI:10.36326/kjvs/2014/v5i24185] Arab, H. H., Salama, S. A., & Maghrabi, I. A. (2018). Camel Milk Ameliorates 5-Fluorouracil-Induced Renal Injury in Rats: Targeting MAPKs, NF-κB and PI3K/Akt/eNOS Pathways. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 46(4), 1628–1642. [DOI:10.1159/000489210][PMID] Arase, H., Yamada, S., Hiyamuta, H., Taniguchi, M., Tokumoto, M., & Tsuruya, K., et al. (2020). Modified creatinine index and risk for long-term infection-related mortality in hemodialysis patients: ten-year outcomes of the Q-Cohort Study. Scientific Reports, 10(1), 1241. [DOI:10.1038/s41598-020-58181-6] [PMID] Asker, M. E., Ali, S. I., Mohamed, S. H., Abdelaleem, R. M. A., & Younis, N. N. (2021). The efficacy of bone marrow-derived mesenchymal stem cells and/or erythropoietin in ameliorating kidney damage in gamma irradiated rats: Role of non-hematopoietic erythropoietin anti-apoptotic signaling. Life Sciences, 275,[DOI:10.1016/j.lfs.2021.119388][PMID] Bachiega, T. F., de Sousa, J. P., Bastos, J. K., & Sforcin, J. M. (2012). Clove and eugenol in noncytotoxic concentrations exert immunomodulatory/anti-inflammatory action on cytokine production by murine macrophages. The Journal of Pharmacy and Pharmacology, 64(4), 610–616. [DOI:10.1111/j.2042-7158.2011.01440.x][PMID] Badi, N., Fazelipour, S., Naji, T., Babaei, M., & Hessari, A. K. (2022). Histomorphometric and biochemical study of liver and thyroid hormones following administration of MoO3 nanoparticles in female rats. Iranian Journal of Veterinary Medicine, 16(2), 188-201. [Link] Barhoma, R. A. (2018). The role of eugenol in the prevention of chromium-induced acute kidney injury in male albino rats. Alexandria Journal of Medicine, 54(4), 711-715. [DOI:10.1016/j.ajme.2018.05.006] Baruah, B., Tamuli, S. M., Begum, S. A., Dutta, B., Bora, D. P., & Borah, B., et al. (2023). The effects of acute iron overload in wistar rats.The Pharma Innovation Journal, 12 (12), 1394-1398. [Link] Bonventre, J. V. (2009). Kidney injury molecule-1 (KIM-1): A urinary biomarker and much more. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association, 24(11), 3265–3268. [DOI:11093/ndt/gfp010][PMID] Dable-Tupas, G., Tulika, V., Jain, V., Maheshwari, K., Brakad, D. D., & Naresh, P. N., et al. (2023). Bioactive compounds of nutrigenomic importance. In G. Dable-Tupas & Ch. Egbuna (Eds.), Role of nutrigenomics in modern-day healthcare and drug discovery (pp. 301-342). Amsterdam: Elsevier: [DOI:10.1016/B978-0-12-824412-8.00003-5] Dang, J., Jia, R., Tu, Y., Xiao, S., & Ding, G. (2010). Erythropoietin prevents reactive oxygen species generation and renal tubular cell apoptosis at high glucose level. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 64(10), 681–685.[DOI:10.1016/j.biopha.2010.06.011][PMID] Elkhadragy, M. F., Aqeel, N. S. M. A., Yehia, H. M., Abdel-Gaber, R., & Hamed, S. S. (2022). Histological and molecular characterization of the protective effect of Eugenia caryophyllata against renal toxicity induced by vitamin D in male wistar rats. Food Science and Technology, 42, [DOI:10.1590/fst.97522] Fathy, M., Abdel-Latif, R., Abdelgwad, Y. M., Othman, O. A., Abdel-Razik, A. H., & Dandekar, T., et al. (2022). Nephroprotective potential of eugenol in a rat experimental model of chronic kidney injury; targeting NOX, TGF-β, and Akt signaling. Life Sciences, 308,[DOI:10.1016/j.lfs.2022.120957][PMID] Fazel, M., Sarveazad, A., Mohamed Ali, K., Yousefifard, M., & Hosseini, M. (2020). Accuracy of urine kidney injury molecule-1 in predicting acute kidney injury in children; A Systematic Review and Meta-Analysis. Archives of Academic Emergency Medicine, 8(1), e44. [PMID] Ganz, T. (2013). Systemic iron homeostasis. Physiological Reviews, 93(4), 1721–1741. [DOI:10.1152/physrev.00008.2013][PMID] Gharaei, F. K., Lakzaei, H., Niazi, A. A., Jahantigh, M., Shahraki, M. R., & Safari, T. (2020). The protective effects of eugenol on metabolic-syndrome, renal damages. Journal of Renal Injury Prevention, 11(1), e4-e4. [DOI:10.34172/jrip.2022.04] Hemani, S., Lane, O., Agarwal, S., Yu, S. P., & Woodbury, A. (2021). Systematic review of erythropoietin (EPO) for neuroprotection in human studies. Neurochemical Research, 46(4), 732–739. [DOI:10.1007/s11064-021-03242-z][PMID] Heriatmo, N. L., Estuningtyas, A., & Soetikno, V. (2023). Iron-overload conditions: Manifestations to the kidney organs–A review. Borneo Journal of Pharmacy, 6(4), 360-369. [Link] Hsu, C. C., Senussi, N. H., Fertrin, K. Y., & Kowdley, K. V. (2022). Iron overload disorders. Hepatology Communications, 6(8), 1842–1854. [DOI:10.1002/hep4.2012][PMID] Hu, J., Meng, F., Hu, X., Huang, L., Liu, H., & Liu, Z., et al. (2020). Iron overload regulate the cytokine of mesenchymal stromal cells through ROS/HIF-1α pathway in Myelodysplastic synd Leukemia Research, 93, 106354. Advance online publication. [DOI:10.1016/j.leukres.2020.106354][PMID] Ige, A. O., Ongele, F. A., Adele, B. O., Emediong, I. E., Odetola, A. O., & Adewoye, E. O. (2019). Pathophysiology of iron overload-induced renal injury and dysfunction: Roles of renal oxidative stress and systemic inflammatory mediators. Pathophysiology: The Official Journal of the International Society for Pathophysiology, 26(2), 175–180. [DOI:10.1016/j.pathophys.2019.03.002][PMID] Ikawati, S., Himawan, T., Abadi, A., Tarno, H., & Fajarudin, A. (2022). In silico study of eugenol and trans-caryophyllene also clove oil fumigant toxicity on Tribolium castaneum. Journal of Tropical Life Science, 12(3), 339-349.[DOI:10.11594/jtls.12.03.07] Jablonski, P., Howden, B. O., Rae, D. A., Birrell, C. S., Marshall, V. C., & Tange, J. (1983). An experimental model for assessment of renal recovery from warm ischemia. Transplantation, 35(3), 198–204. [DOI:10.1097/00007890-198303000-00002][PMID] Jaganathan, S. K., & Supriyanto, E. (2012). Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules (Basel, Switzerland), 17(6), 6290–6304. [DOI:10.3390/molecules17066290][PMID] Jirkof, P., & Lofgren, J. (2023). Anesthesia and analgesia in laboratory rodents-14. In: Melissa C. Dyson, Paulin Jirkof, (eds) Anesthesia and analgesia in laboratory animals. Chester: American College of Laboratory Animal Medicine, Academic Press. pp. 287-356. Koohkan, O., Morovvati, H., & Mirghaed, A. T. (2023). Effects of Spirulina platensis on Iron Oxide Nanoparticles Induced-oxidative Stress and Liver Damage in Grey Mullet (Mugil cephalus). Iranian Journal of Veterinary Medicine, 17(1), 75-86. [Link] Kuang, B. C., Wang, Z. H., Hou, S., Zhang, J., Wang, M. Q., & Zhang, J. S., et al. (2023). Methyl eugenol protects the kidney from oxidative damage in mice by blocking the Nrf2 nuclear export signal through activation of the AMPK/GSK3β axis. Acta Pharmacologica Sinica, 44(2), 367–380. [DOI:10.1038/s41401-022-00942-2][PMID] Kumar, A., Siddiqi, N. J., Alrashood, S. T., Khan, H. A., Dubey, A., & Sharma, B. (2021). Protective effect of eugenol on hepatic inflammation and oxidative stress induced by cadmium in male rats. Biomedicine & Pharmacotherapy, 139,[DOI:10.1016/j.biopha.2021.111588][PMID] Luna, L. G. (1968). Manual of histologic staining methods of the Armed Forces Institute of Pathology. In: Manual of histologic staining methods of the Armed Forces Institute of Pathology (pp. 258-1968). New York: McGraw-Hill. [Link] Maiese, K., Chong, Z. Z., Hou, J., & Shang, Y. C. (2008). Erythropoietin and oxidative stress. Current Neurovascular Research, 5(2), 125–142. [DOI:10.2174/156720208784310231][PMID] Mateen, S., Rehman, M. T., Shahzad, S., Naeem, S. S., Faizy, A. F., & Khan, A. Q., et al. (2019). Anti-oxidant and anti-inflammatory effects of cinnamaldehyde and eugenol on mononuclear cells of rheumatoid arthritis patients. European Journal of Pharmacology, 852, 14–24. [DOI:10.1016/j.ejphar.2019.02.031][PMID] Mateen, S., Shahzad, S., Ahmad, S., Naeem, S. S., Khalid, S., & Akhtar, K., et al. (2019). Cinnamaldehyde and eugenol attenuates collagen induced arthritis via reduction of free radicals and pro-inflammatory cytokines. Phy, 53, 70-78.[DOI:10.1016/j.phymed.2018.09.004][PMID] Melo, N. O. R., Silva, M. S., & Lima, W. P. (2023). Effect of eugenol and gum arabic on oxidative stress and genotoxicity in rat spleen, kidney and lung tissue following colorectal carcinogenesis. International Journal of Herbal Medicine, 11(1), 22-9. [Link] Mohammad, G., Matakidou, A., Robbins, P. A., & Lakhal-Littleton, S. (2021). The kidney hepcidin/ferroportin axis controls iron reabsorption and determines the magnitude of kidney and systemic iron overload. Kidney International, 100(3), 559–569. [DOI:1016/j.kint.2021.04.034][PMID] Ntumi, S. (2021). Reporting and interpreting One-Way Analysis of Variance (ANOVA) using a data-driven example: A practical guide for social science researchers. Journal of Research in Educational Sciences, 12(14), 38-47. [Link] Peng, S., Liu, N., Wei, K., Li, G., Zou, Z., & Liu, T., et al. (2022). The predicted value of kidney injury Molecule-1 (KIM-1) in Healthy People. International Journal of General Medicine, 15, 4495–4503. [DOI:10.2147/IJGM.S361468][PMID] Polaka,, Nalla, L. V., Kalpeshkumar, R. D., Teja, P. S., More, A., & Tekade, M., et al. (2023). Drug-induced nephrotoxicity and its biomarkers. In: R. Tekade (Ed.), Essentials of Pharmatoxicology in Drug Research (pp. 289-316). Cambridge: Academic Press. [DOI:10.1016/B978-0-443-15840-7.00011-7] Refaat, B., Abdelghany, A. H., BaSalamah, M. A., El-Boshy, M., Ahmad, J., & Idris, S. (2018). Acute and chronic iron overloading differentially modulates the expression of cellular iron-homeostatic molecules in normal rat kidney. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 66(11), 825–839.[DOI:10.1369/0022155418782696][PMID] Rifai, N. (2022). Tietz textbook of laboratory medicine. Amsterdam: Elsevier Health Sciences. [Link] Ríos-Silva, M., Cárdenas, Y., Ortega-Macías, A. G., Trujillo, X., Murillo-Zamora, E., & Mendoza-Cano, O., et al. (2023). Animal models of kidney iron overload and ferroptosis: a review of the literature. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 36(6), 1173–1187. [DOI:10.1007/s10534-023-00518-5][PMID] Said, M. M. (2011). The protective effect of eugenol against gentamicin-induced nephrotoxicity and oxidative damage in rat kidney. Fundamental and Clinical Pharmacology, 25(6), 708-716.[DOI:10.1111/j.1472-8206.2010.00900.x][PMID] Saleh Mehdy Al-zeiny, S., & Abbas, D. A. (2017). Comparative histological study of protective effect of oil and alcoholic extracts of dry palm dates and leaves (Phoenix dactylifera L) against CCL4 induced oxidative stress in rats. Kufa Journal For Veterinary Medical Sciences, 8(1), 79-89. [Link] Sales, G. T. M., & Foresto, R. D. (2020). Drug-induced nephrotoxicity. Revista da Associacao Medica Brasileira (1992), 66(Suppl 1), s82–s90. [DOI:10.1590/1806-9282.66.S1.82][PMID] Seyednejad, S. F., Shirani, D., Bokai, S., & Nasiri, S. M. (2023). Evaluation of iron status in cats with hypertrophic cardiomyopathy with and without congestive heart failure. Iranian Journal of Veterinary Medicine, 17(3), 209-216. [Link] Shahsavari, M., Norouzi, P., Kalalianmoghaddam, H., & Teimouri, M. (2023). Effects of Kudzu root on oxidative stress and inflammation in streptozotocin-induced diabetic rats. Iranian Journal of Veterinary Medicine, 17(4), 401-408.[DOI:10.32598/ijvm.17.4.1005281] Sharma, U. K., Kumar, R., Gupta, A., Ganguly, R., Singh, A. K., & Ojha, A. K., et al. (2019). Ameliorating efficacy of eugenol against metanil yellow induced toxicity in albino Wistar rats. Food and Chemical Toxicology: An International Journal published for the British Industrial Biological Research Association, 126, 34–40. [DOI:10.1016/j.fct.2019.01.032][PMID] Sharma, V., & Singh, T. G. (2023). Drug induced nephrotoxicity- A mechanistic approach. Molecular Biology Reports, 50(8), 6975–6986. [DOI:10.1007/s11033-023-08573-4][PMID] Spitz, D. R., & Oberley, L. W. (1989). An assay for superoxide dismutase activity in mammalian tissue homogenates. Analytical Biochemistry, 179(1), 8–18. [DOI:10.1016/0003-2697(89)90192-9][PMID] Sun, Y., Liu, G., Jiang, Y., Wang, H., Xiao, H., & Guan, G. (2018). Erythropoietin protects erythrocytes against oxidative stress-induced eryptosis in vitro. Clinical Laboratory, 64(3), 365–369. [DOI:10.7754/Clin.Lab.2017.170924] [PMID] Teschke, R. (2022). Aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc: Molecular aspects in experimental liver injury. International Journal of Molecular Sciences, 23(20), 12213. [DOI:10.3390/ijms232012213][PMID] Toprak, T., Sekerci, C. A., Aydın, H. R., Ramazanoglu, M. A., Arslan, F. D., & Basok, B. I., et al. (2020). Protective effect of chlorogenic acid on renal ischemia/reperfusion injury in rats. Archivio Italiano di Urologia e Andrologia, 92(2), 153-157. [DOI:10.4081/aiua.2020.2.153] [PMID] Udani, K., Chris-Olaiya, A., Ohadugha, C., Malik, A., Sansbury, J., & Paari, D. (2021). Cardiovascular manifestations in hospitalized patients with hemochromatosis in the United States. International Journal of Cardiology, 342, 117-124. [DOI:10.1016/j.ijcard.2021.07.060] [PMID] Uchewa, O. O., Chukwuemelie, C. E., Ovioson, A. I., & Ibegbu, A. O. (2023). Alleviating effects of clove essential oil disolved in dimethyl sulfoxide (Dmso) against cadmium-induced testicular and epididymal damages in male wistar rats. Archives of Razi Institute, 78(6), 1728–1737. [DOI:10.32592/ARI.2023.78.6.1728][PMID] van Raaij, S. E. G., Rennings, A. J., Biemond, B. J., Schols, S. E. M., Wiegerinck, E. T. G., & Roelofs, H. M. J., et al. (2019). Iron handling by the human kidney: Glomerular filtration and tubular reabsorption both contribute to urinary iron excretion. American Journal of Physiology. Renal Physiology, 316(3), F606–F614. [DOI:10.1152/ajprenal.00425.2018][PMID] Verna, F. D., & Estuningtyas, A. (2022). Hematological Profile of Iron Overload in Rats Administered with Fruit Extract of Mahkota Dewa (Phaleria macrocarpa). Jurnal Farmasi Galenika (Galenika Journal of Pharmacy)(e-Journal), 8(2), 117-123. [DOI:10.22487/j24428744.2022.v8.i2.15936] Vilela, A. P., Ferreira, L., Biscaia, P. B., Silva, K. L. D., Beltrame, F. L., & Camargo, G. D. A., et al. (2023). Preparation, characterization and stability study of eugenol-loaded eudragit rs100 nanocapsules for dental sensitivity reduction. Brazilian Archives of Biology and Technology, 66(spe), e23230300.[DOI:10.1590/1678-4324-ssbfar-2023230300] Wu, A. H. (2006). Tietz clinical guide to laboratory tests-e-book. Amsterdam: Elsevier Health Sciences. [Link] Yun, S., Chu, D., He, X., Zhang, W., & Feng, C. (2020). Protective effects of grape seed proanthocyanidins against iron overload-induced renal oxidative damage in rat Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 57, 126407. [DOI:10.1016/j.jtemb.2019.126407][PMID] Abed Al-Kareem, Z., Aziz, N. D., & Ali Zghair, M. (2022). Hepatoprotective Effect of Coenzyme Q10 in Rats with Diclofenac Toxicity. Archives of Razi Institute, 77(2), 599–605. [PMID] Zheng, Q. Q., Zhao, Y. S., Guo, J., Zhao, S. D., Song, L. X., & Fei, C. M., et al. (2017). Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome. Leukemia Research, 58, 55–62. [DOI:10.1016/j.leukres.2017.04.005][PMID] | ||
مراجع | ||
Abdel-Magied, N., Elkady, A. A., & Abdel Fattah, S. M. (2020). Effect of low-level laser on some metals related to redox state and histological alterations in the liver and kidney of irradiated rats. Biological Trace Element Research, 194(2), 410–422.[DOI:10.1007/s12011-019-01779-3][PMID]
Abdul AL-Abbas, A. A. H., & Mlaghee, S. M. (2023). Therapeutic effect of curcumin on dermatitis induced by acetone in female rats. Kufa Journal for Veterinary Medical Sciences, 14(2), 1. [Link]
Aboelwafa, H. R., Ramadan, R. A., Ibraheim, S. S., & Yousef, H. N. (2022). Modulation effects of eugenol on nephrotoxicity triggered by silver nanoparticles in adult rats. Biology, 11(12), 1719. [DOI:10.3390/biology11121719][PMID]
Adli, D. E. H., Ziani, K., Kourat, D., Brahmi, M., Souidi, S. A., & Naar, A., et al. (2022). Ameliorative effect of the essential oil of syzygium aromaticum in wistars rats exposed to aluminum chloride. Egyptian Academic Journal of Biological Sciences. C, Physiology and Molecular Biology, 14(2), 403-413. [DOI:10.21608/eajbsc.2022.277234]
Alpert, A. J., & Gilbert, H. F. (1985). Detection of oxidized and reduced glutathione with a recycling postcolumn reaction. Analytical Biochemistry, 144(2), 553–562. [DOI:10.1016/0003-2697(85)90153-8][PMID]
Al-Sharafi, N. M., & Al-Sharafi, M. R. (2014). Study the effects of ginger (Zingiber officinale) extract on serum lipid in hypothyroidism male rats induce by propylthiouracil. Kufa Journal for Veterinary Medical Sciences, 5(2), 258-266. [DOI:10.36326/kjvs/2014/v5i24185]
Arab, H. H., Salama, S. A., & Maghrabi, I. A. (2018). Camel Milk Ameliorates 5-Fluorouracil-Induced Renal Injury in Rats: Targeting MAPKs, NF-κB and PI3K/Akt/eNOS Pathways. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 46(4), 1628–1642. [DOI:10.1159/000489210][PMID]
Arase, H., Yamada, S., Hiyamuta, H., Taniguchi, M., Tokumoto, M., & Tsuruya, K., et al. (2020). Modified creatinine index and risk for long-term infection-related mortality in hemodialysis patients: ten-year outcomes of the Q-Cohort Study. Scientific Reports, 10(1), 1241. [DOI:10.1038/s41598-020-58181-6] [PMID]
Asker, M. E., Ali, S. I., Mohamed, S. H., Abdelaleem, R. M. A., & Younis, N. N. (2021). The efficacy of bone marrow-derived mesenchymal stem cells and/or erythropoietin in ameliorating kidney damage in gamma irradiated rats: Role of non-hematopoietic erythropoietin anti-apoptotic signaling. Life Sciences, 275,[DOI:10.1016/j.lfs.2021.119388][PMID]
Bachiega, T. F., de Sousa, J. P., Bastos, J. K., & Sforcin, J. M. (2012). Clove and eugenol in noncytotoxic concentrations exert immunomodulatory/anti-inflammatory action on cytokine production by murine macrophages. The Journal of Pharmacy and Pharmacology, 64(4), 610–616. [DOI:10.1111/j.2042-7158.2011.01440.x][PMID]
BBadi, N., Fazelipour, S., Naji, T., Babaei, M., & Hessari, A. K. (2022). Histomorphometric and biochemical study of liver and thyroid hormones following administration of MoO3 nanoparticles in female rats. Iranian Journal of Veterinary Medicine, 16(2), 188-201. [Link]
Barhoma, R. A. (2018). The role of eugenol in the prevention of chromium-induced acute kidney injury in male albino rats. Alexandria Journal of Medicine, 54(4), 711-715. [DOI:10.1016/j.ajme.2018.05.006]
Baruah, B., Tamuli, S. M., Begum, S. A., Dutta, B., Bora, D. P., & Borah, B., et al. (2023). The effects of acute iron overload in wistar rats.The Pharma Innovation Journal, 12 (12), 1394-1398. [Link]
Bonventre, J. V. (2009). Kidney injury molecule-1 (KIM-1): A urinary biomarker and much more. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association, 24(11), 3265–3268. [DOI:11093/ndt/gfp010][PMID]
Dable-Tupas, G., Tulika, V., Jain, V., Maheshwari, K., Brakad, D. D., & Naresh, P. N., et al. (2023). Bioactive compounds of nutrigenomic importance. In G. Dable-Tupas & Ch. Egbuna (Eds.), Role of nutrigenomics in modern-day healthcare and drug discovery (pp. 301-342). Amsterdam: Elsevier: [DOI:10.1016/B978-0-12-824412-8.00003-5]
Dang, J., Jia, R., Tu, Y., Xiao, S., & Ding, G. (2010). Erythropoietin prevents reactive oxygen species generation and renal tubular cell apoptosis at high glucose level. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 64(10), 681–685.[DOI:10.1016/j.biopha.2010.06.011][PMID]
Elkhadragy, M. F., Aqeel, N. S. M. A., Yehia, H. M., Abdel-Gaber, R., & Hamed, S. S. (2022). Histological and molecular characterization of the protective effect of Eugenia caryophyllata against renal toxicity induced by vitamin D in male wistar rats. Food Science and Technology, 42, [DOI:10.1590/fst.97522]
Fathy, M., Abdel-Latif, R., Abdelgwad, Y. M., Othman, O. A., Abdel-Razik, A. H., & Dandekar, T., et al. (2022). Nephroprotective potential of eugenol in a rat experimental model of chronic kidney injury; targeting NOX, TGF-β, and Akt signaling. Life Sciences, 308,[DOI:10.1016/j.lfs.2022.120957][PMID]
Fazel, M., Sarveazad, A., Mohamed Ali, K., Yousefifard, M., & Hosseini, M. (2020). Accuracy of urine kidney injury molecule-1 in predicting acute kidney injury in children; A Systematic Review and Meta-Analysis. Archives of Academic Emergency Medicine, 8(1), e44. [PMID]
Ganz, T. (2013). Systemic iron homeostasis. Physiological Reviews, 93(4), 1721–1741. [DOI:10.1152/physrev.00008.2013][PMID]
Gharaei, F. K., Lakzaei, H., Niazi, A. A., Jahantigh, M., Shahraki, M. R., & Safari, T. (2020). The protective effects of eugenol on metabolic-syndrome, renal damages. Journal of Renal Injury Prevention, 11(1), e4-e4. [DOI:10.34172/jrip.2022.04]
Hemani, S., Lane, O., Agarwal, S., Yu, S. P., & Woodbury, A. (2021). Systematic review of erythropoietin (EPO) for neuroprotection in human studies. Neurochemical Research, 46(4), 732–739. [DOI:10.1007/s11064-021-03242-z][PMID]
Heriatmo, N. L., Estuningtyas, A., & Soetikno, V. (2023). Iron-overload conditions: Manifestations to the kidney organs–A review. Borneo Journal of Pharmacy, 6(4), 360-369. [Link]
Hsu, C. C., Senussi, N. H., Fertrin, K. Y., & Kowdley, K. V. (2022). Iron overload disorders. Hepatology Communications, 6(8), 1842–1854. [DOI:10.1002/hep4.2012][PMID]
Hu, J., Meng, F., Hu, X., Huang, L., Liu, H., & Liu, Z., et al. (2020). Iron overload regulate the cytokine of mesenchymal stromal cells through ROS/HIF-1α pathway in Myelodysplastic synd Leukemia Research, 93, 106354. Advance online publication. [DOI:10.1016/j.leukres.2020.106354][PMID]
Ige, A. O., Ongele, F. A., Adele, B. O., Emediong, I. E., Odetola, A. O., & Adewoye, E. O. (2019). Pathophysiology of iron overload-induced renal injury and dysfunction: Roles of renal oxidative stress and systemic inflammatory mediators. Pathophysiology: The Official Journal of the International Society for Pathophysiology, 26(2), 175–180. [DOI:10.1016/j.pathophys.2019.03.002][PMID]
Ikawati, S., Himawan, T., Abadi, A., Tarno, H., & Fajarudin, A. (2022). In silico study of eugenol and trans-caryophyllene also clove oil fumigant toxicity on Tribolium castaneum. Journal of Tropical Life Science, 12(3), 339-349.[DOI:10.11594/jtls.12.03.07]
Jablonski, P., Howden, B. O., Rae, D. A., Birrell, C. S., Marshall, V. C., & Tange, J. (1983). An experimental model for assessment of renal recovery from warm ischemia. Transplantation, 35(3), 198–204. [DOI:10.1097/00007890-198303000-00002][PMID]
Jaganathan, S. K., & Supriyanto, E. (2012). Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules (Basel, Switzerland), 17(6), 6290–6304. [DOI:10.3390/molecules17066290][PMID]
Jirkof, P., & Lofgren, J. (2023). Anesthesia and analgesia in laboratory rodents-14. In: Melissa C. Dyson, Paulin Jirkof, (eds) Anesthesia and analgesia in laboratory animals. Chester: American College of Laboratory Animal Medicine, Academic Press. pp. 287-356.
Koohkan, O., Morovvati, H., & Mirghaed, A. T. (2023). Effects of Spirulina platensis on Iron Oxide Nanoparticles Induced-oxidative Stress and Liver Damage in Grey Mullet (Mugil cephalus). Iranian Journal of Veterinary Medicine, 17(1), 75-86. [Link]
Kuang, B. C., Wang, Z. H., Hou, S., Zhang, J., Wang, M. Q., & Zhang, J. S., et al. (2023). Methyl eugenol protects the kidney from oxidative damage in mice by blocking the Nrf2 nuclear export signal through activation of the AMPK/GSK3β axis. Acta Pharmacologica Sinica, 44(2), 367–380. [DOI:10.1038/s41401-022-00942-2][PMID]
Kumar, A., Siddiqi, N. J., Alrashood, S. T., Khan, H. A., Dubey, A., & Sharma, B. (2021). Protective effect of eugenol on hepatic inflammation and oxidative stress induced by cadmium in male rats. Biomedicine & Pharmacotherapy, 139,[DOI:10.1016/j.biopha.2021.111588][PMID]
Luna, L. G. (1968). Manual of histologic staining methods of the Armed Forces Institute of Pathology. In: Manual of histologic staining methods of the Armed Forces Institute of Pathology (pp. 258-1968). New York: McGraw-Hill. [Link]
Maiese, K., Chong, Z. Z., Hou, J., & Shang, Y. C. (2008). Erythropoietin and oxidative stress. Current Neurovascular Research, 5(2), 125–142. [DOI:10.2174/156720208784310231][PMID]
Mateen, S., Rehman, M. T., Shahzad, S., Naeem, S. S., Faizy, A. F., & Khan, A. Q., et al. (2019). Anti-oxidant and anti-inflammatory effects of cinnamaldehyde and eugenol on mononuclear cells of rheumatoid arthritis patients. European Journal of Pharmacology, 852, 14–24. [DOI:10.1016/j.ejphar.2019.02.031][PMID]
Mateen, S., Shahzad, S., Ahmad, S., Naeem, S. S., Khalid, S., & Akhtar, K., et al. (2019). Cinnamaldehyde and eugenol attenuates collagen induced arthritis via reduction of free radicals and pro-inflammatory cytokines. Phy, 53, 70-78.[DOI:10.1016/j.phymed.2018.09.004][PMID]
Melo, N. O. R., Silva, M. S., & Lima, W. P. (2023). Effect of eugenol and gum arabic on oxidative stress and genotoxicity in rat spleen, kidney and lung tissue following colorectal carcinogenesis. International Journal of Herbal Medicine, 11(1), 22-9. [Link]
Mohammad, G., Matakidou, A., Robbins, P. A., & Lakhal-Littleton, S. (2021). The kidney hepcidin/ferroportin axis controls iron reabsorption and determines the magnitude of kidney and systemic iron overload. Kidney International, 100(3), 559–569. [DOI:1016/j.kint.2021.04.034][PMID]
Ntumi, S. (2021). Reporting and interpreting One-Way Analysis of Variance (ANOVA) using a data-driven example: A practical guide for social science researchers. Journal of Research in Educational Sciences, 12(14), 38-47. [Link]
Peng, S., Liu, N., Wei, K., Li, G., Zou, Z., & Liu, T., et al. (2022). The predicted value of kidney injury Molecule-1 (KIM-1) in Healthy People. International Journal of General Medicine, 15, 4495–4503. [DOI:10.2147/IJGM.S361468][PMID]
Polaka,, Nalla, L. V., Kalpeshkumar, R. D., Teja, P. S., More, A., & Tekade, M., et al. (2023). Drug-induced nephrotoxicity and its biomarkers. In: R. Tekade (Ed.), Essentials of Pharmatoxicology in Drug Research (pp. 289-316). Cambridge: Academic Press. [DOI:10.1016/B978-0-443-15840-7.00011-7]
Refaat, B., Abdelghany, A. H., BaSalamah, M. A., El-Boshy, M., Ahmad, J., & Idris, S. (2018). Acute and chronic iron overloading differentially modulates the expression of cellular iron-homeostatic molecules in normal rat kidney. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 66(11), 825–839.[DOI:10.1369/0022155418782696][PMID]
Rifai, N. (2022). Tietz textbook of laboratory medicine. Amsterdam: Elsevier Health Sciences. [Link]
Ríos-Silva, M., Cárdenas, Y., Ortega-Macías, A. G., Trujillo, X., Murillo-Zamora, E., & Mendoza-Cano, O., et al. (2023). Animal models of kidney iron overload and ferroptosis: a review of the literature. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 36(6), 1173–1187. [DOI:10.1007/s10534-023-00518-5][PMID]
Said, M. M. (2011). The protective effect of eugenol against gentamicin-induced nephrotoxicity and oxidative damage in rat kidney. Fundamental and Clinical Pharmacology, 25(6), 708-716.[DOI:10.1111/j.1472-8206.2010.00900.x][PMID]
Saleh Mehdy Al-zeiny, S., & Abbas, D. A. (2017). Comparative histological study of protective effect of oil and alcoholic extracts of dry palm dates and leaves (Phoenix dactylifera L) against CCL4 induced oxidative stress in rats. Kufa Journal For Veterinary Medical Sciences, 8(1), 79-89. [Link]
Sales, G. T. M., & Foresto, R. D. (2020). Drug-induced nephrotoxicity. Revista da Associacao Medica Brasileira (1992), 66(Suppl 1), s82–s90. [DOI:10.1590/1806-9282.66.S1.82][PMID]
Seyednejad, S. F., Shirani, D., Bokai, S., & Nasiri, S. M. (2023). Evaluation of iron status in cats with hypertrophic cardiomyopathy with and without congestive heart failure. Iranian Journal of Veterinary Medicine, 17(3), 209-216. [Link]
Shahsavari, M., Norouzi, P., Kalalianmoghaddam, H., & Teimouri, M. (2023). Effects of Kudzu root on oxidative stress and inflammation in streptozotocin-induced diabetic rats. Iranian Journal of Veterinary Medicine, 17(4), 401-408.[DOI:10.32598/ijvm.17.4.1005281]
Sharma, U. K., Kumar, R., Gupta, A., Ganguly, R., Singh, A. K., & Ojha, A. K., et al. (2019). Ameliorating efficacy of eugenol against metanil yellow induced toxicity in albino Wistar rats. Food and Chemical Toxicology: An International Journal published for the British Industrial Biological Research Association, 126, 34–40. [DOI:10.1016/j.fct.2019.01.032][PMID]
Sharma, V., & Singh, T. G. (2023). Drug induced nephrotoxicity- A mechanistic approach. Molecular Biology Reports, 50(8), 6975–6986. [DOI:10.1007/s11033-023-08573-4][PMID]
Spitz, D. R., & Oberley, L. W. (1989). An assay for superoxide dismutase activity in mammalian tissue homogenates. Analytical Biochemistry, 179(1), 8–18. [DOI:10.1016/0003-2697(89)90192-9][PMID]
Sun, Y., Liu, G., Jiang, Y., Wang, H., Xiao, H., & Guan, G. (2018). Erythropoietin protects erythrocytes against oxidative stress-induced eryptosis in vitro. Clinical Laboratory, 64(3), 365–369. [DOI:10.7754/Clin.Lab.2017.170924] [PMID]
Teschke, R. (2022). Aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc: Molecular aspects in experimental liver injury. International Journal of Molecular Sciences, 23(20), 12213. [DOI:10.3390/ijms232012213][PMID]
Toprak, T., Sekerci, C. A., Aydın, H. R., Ramazanoglu, M. A., Arslan, F. D., & Basok, B. I., et al. (2020). Protective effect of chlorogenic acid on renal ischemia/reperfusion injury in rats. Archivio Italiano di Urologia e Andrologia, 92(2), 153-157. [DOI:10.4081/aiua.2020.2.153] [PMID]
Udani, K., Chris-Olaiya, A., Ohadugha, C., Malik, A., Sansbury, J., & Paari, D. (2021). Cardiovascular manifestations in hospitalized patients with hemochromatosis in the United States. International Journal of Cardiology, 342, 117-124. [DOI:10.1016/j.ijcard.2021.07.060] [PMID]
Uchewa, O. O., Chukwuemelie, C. E., Ovioson, A. I., & Ibegbu, A. O. (2023). Alleviating effects of clove essential oil disolved in dimethyl sulfoxide (Dmso) against cadmium-induced testicular and epididymal damages in male wistar rats. Archives of Razi Institute, 78(6), 1728–1737. [DOI:10.32592/ARI.2023.78.6.1728][PMID]
van Raaij, S. E. G., Rennings, A. J., Biemond, B. J., Schols, S. E. M., Wiegerinck, E. T. G., & Roelofs, H. M. J., et al. (2019). Iron handling by the human kidney: Glomerular filtration and tubular reabsorption both contribute to urinary iron excretion. American Journal of Physiology. Renal Physiology, 316(3), F606–F614. [DOI:10.1152/ajprenal.00425.2018][PMID]
Verna, F. D., & Estuningtyas, A. (2022). Hematological Profile of Iron Overload in Rats Administered with Fruit Extract of Mahkota Dewa (Phaleria macrocarpa). Jurnal Farmasi Galenika (Galenika Journal of Pharmacy)(e-Journal), 8(2), 117-123. [DOI:10.22487/j24428744.2022.v8.i2.15936]
Vilela, A. P., Ferreira, L., Biscaia, P. B., Silva, K. L. D., Beltrame, F. L., & Camargo, G. D. A., et al. (2023). Preparation, characterization and stability study of eugenol-loaded eudragit rs100 nanocapsules for dental sensitivity reduction. Brazilian Archives of Biology and Technology, 66(spe), e23230300.[DOI:10.1590/1678-4324-ssbfar-2023230300]
Wu, A. H. (2006). Tietz clinical guide to laboratory tests-e-book. Amsterdam: Elsevier Health Sciences. [Link]
Yun, S., Chu, D., He, X., Zhang, W., & Feng, C. (2020). Protective effects of grape seed proanthocyanidins against iron overload-induced renal oxidative damage in rat Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 57, 126407. [DOI:10.1016/j.jtemb.2019.126407][PMID]
Abed Al-Kareem, Z., Aziz, N. D., & Ali Zghair, M. (2022). Hepatoprotective Effect of Coenzyme Q10 in Rats with Diclofenac Toxicity. Archives of Razi Institute, 77(2), 599–605. [PMID]
Zheng, Q. Q., Zhao, Y. S., Guo, J., Zhao, S. D., Song, L. X., & Fei, C. M., et al. (2017). Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome. Leukemia Research, 58, 55–62. [DOI:10.1016/j.leukres.2017.04.005][PMID] | ||
آمار تعداد مشاهده مقاله: 123 تعداد دریافت فایل اصل مقاله: 242 |