
تعداد نشریات | 162 |
تعداد شمارهها | 6,649 |
تعداد مقالات | 71,679 |
تعداد مشاهده مقاله | 127,695,816 |
تعداد دریافت فایل اصل مقاله | 100,506,554 |
شناسایی مناطق ژنومی مرتبط با ذخیره چربی در برخی از نژادهای گوسفند آسیایی و آفریقایی بر پایه روش نشانه های انتخاب | ||
علوم دامی ایران | ||
دوره 56، شماره 1، فروردین 1404، صفحه 19-34 اصل مقاله (1.66 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijas.2024.374928.654010 | ||
نویسندگان | ||
سوسن رادپور1؛ محمدتقی بیگی نصیری1؛ محمدحسین مرادی* 2؛ علی اسمعیلی زاده کشکوئیه3 | ||
1گروه علوم دامی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران. | ||
2گروه علوم دامی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک، اراک، ایران | ||
3بخش علوم دامی، دانشکده کشاورزی ,و منابع طبیعی، دانشگاه شهید باهنر کرمان، کرمان. ایران | ||
چکیده | ||
پژوهش حاضر با هدف شناسایی مناطق ژنومی، ژنهای کاندید و مسیرهای زیستی مؤثر بر ذخیره چربی در دنبه در برخی از نژادهای گوسفند آسیایی و آفریقایی بر اساس بررسی نشانههای انتخاب و آنالیز غنیسازی مجموعههای ژنی انجام شده است. بدین منظور، از مجموع اطلاعات ژنومی مربوط به 49034 جایگاه نشانگری SNP متعلق به 404 نمونه حیوان شامل 13 نژاد دنبهدار و 7 نژاد بدون دنبه، با ابعاد دنبه و دم نسبتاً مشابه که در مناطق مختلف آسیا و آفریقا پراکنش داشتند، استفاده شد. جهت بررسی نحوه قرار گرفتن حیوانات در گروههای نژادی خود از آنالیز مؤلفههای اصلی (PCA) و برای ردیابی نشانههای انتخاب مثبت از آزمون نااریب FST (تتا) استفاده شد. سپس ژنهای گزارش شده در مناطق تحت انتخاب شناسایی گردید و آنالیز غنیسازی مجموعه ژنی با هدف شناسایی مسیرهای بیولوژیکی (و ژنهای کاندیدای) مرتبط با ذخیره چربی انجام شد. آنالیز مؤلفههای اصلی (PCA) نشان داد که تمام حیوانات در گروههای نژادی خود قرار میگیرند و نژادهای دنبهدار و بدون دنبه را میتوان بر اساس مؤلفههای مختلف از هم تفکیک نمود. در این پژوهش 19 منطقه ژنومی تحت انتخاب بین نژادهای دنبهدار و بدون دنبه شناسایی شد. بررسی ژنهای گزارش شده در این مناطق منجر به شناسایی چندین مسیر بیولوژیکی (و ژنهای کاندیدا) شد که به طور مستقیم یا غیر مستقیم با مورفولوژی دم (NDUFB، ANO4، ASXL2، ABHD2 و NID2)، اندازه دنبه (ACADL)، اسکلت و یا ساختار اندازه بدن (PDGFD، ACAN،HOXC ،HOXB ، BMP2 و (BMP4، پاسخ ایمنی (ATG5، IL4، IL5 و IL13) و تنظیم ملانوسیتها (KITLG) مرتبط میباشند. | ||
کلیدواژهها | ||
ژنهای کاندید؛ شاخص تمایز جمعیتی؛ گوسفندان آسیایی؛ گوسفندان آفریقایی؛ نشانههای انتخاب | ||
عنوان مقاله [English] | ||
Identification of Genomic Regions Associated with Fat Deposition in Some Asian and African Sheep Breeds Based on Selection Signature | ||
نویسندگان [English] | ||
Susan Radpour1؛ Mohammad Taghi Beigi Nassiri1؛ Mohammad Hossein Moradi2؛ Ali Esmailizadeh3 | ||
1Department of Animal Science, Faculty of Animal science and Food Technology, Agricultural Science and Natural Resources University of Khuzestan, Mollasani, Iran. | ||
2Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran | ||
3Department of Animal Science, Faculty of Agriculture and Natural Resources, Shahid Bahonar University of Kerman, Kerman, Iran | ||
چکیده [English] | ||
The selection of novel mutations beneficial only in some subpopulations leads to the retention of signatures across the genome. This study aimed to identify genomic regions, candidate genes, and biological pathways associated with fat deposition in some Asian and African sheep breeds based on selection signatures method and gene set enrichment analysis. A total of 49,034 SNP markers data obtained from 404 animal samples, including 13 fat-tailed and 7 thin-tailed sheep breeds with relatively similar tail and fat-tail dimensions distributed across different regions of Asia and Africa, were used. Principal component analysis (PCA) was utilized for assessing the clustering of animals into their true population, and FST (Theta) statistics was employed for detecting of positive selection signatures. Subsequently, genes reported in the selected regions were identified, and gene set enrichment analysis was performed to identify biological pathways (and candidate genes) associated with fat deposition. PCA analysis showed that all animals clustered into their respective breed groups, and thin and fat tailed sheep breeds could be separated based on different components. In this study, 19 genomic regions were identified to be under selection between thin and fat tailed sheep breeds. Investigation of reported genes in these regions led to the identification of several biological pathways (and candidate genes) directly or indirectly associated with tail morphology (NDUFB, ANO4, ASXL2, ABHD2, and NID2), fat-tail size (ACADL), skeletal or body size (PDGFD, ACAN, HOXC, HOXB, BMP2, and BMP4), immune response (ATG5, IL4, IL5, and IL13), and melanocyte regulation (KITLG). Overall, the findings of this study could play an important role for identifying the genomic regions associated with distinctive phenotypic traits of these breeds, especially fat deposition traits in tails, immunity, and adaptability, which could be of great economic importance in the future considering the observable climatic changes in recent years in various countries. | ||
کلیدواژهها [English] | ||
Candidate genes, Population differentiation index, Asian sheep, African sheep, Selection signatures | ||
مراجع | ||
منابعچعبی، م؛ فیاضی، ج؛ روشنفکر، ه. ا؛ نظری، م؛ مرادی، م. ح (1401). پویش گسترده ژنوم گوسفند برای اثرات متقابل لوکوسهای مؤثر بر وجود دنبه. پایان نامه کارشناسی ارشد، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، 48-47. مرادی، م .ح؛ خلت آبادی فراهانی، ا .ح؛ نجاتی جوارمی، 1 (1396). ارزیابی ژنگانی اندازه مؤثر جمعیت برخی از نژادهای گوسفند ایرانی با استفاده از اطلاعات عدم تعادل پیوستگی. مجله علوم دامی ایران، 48 (1)، 49-39. REFERENCES Abdalla E.A., Peñagaricano, F., Byrem T.M., Weigel K.A., & Rosa, G.J.M. (2016). Genome‐wide association mapping and pathway analysis of leukosis incidence in a US holstein cattle population. Animal Genetics, 47(4), 395-407. Abdelkader, A.A., Ata, N., Benyoucef, M.T., Djaout, A., Azzi, N., & Yilmaz, O. (2017). New genetic identification and characterisation of 12 Algerian sheep breeds by microsatellite markers. Italian Journal of Animal Science, 17, 38–48. Ahbara, A., Bahbahani, H., Almathen, F., Al Abri, M., Omar Agoub, M., Abeba, A., Kebede, A., Musa, H., Mastrangelo, S., Pilla, F., Ciani, E., Hanotte, O., & Mwacharo, J. M. (2019). Genome-wide variation, candidate regions and genes associated with fat deposition and tail morphology in Ethiopian Indigenous sheep. Frontiers in Genetics, 9, 699. Akey J.M. (2009). Constructing genomic maps of positive selection in humans: Where do we go from here. Genome Research, 19(5), 711-722. Berggreen, C., Gormand, A., Omar, B., Degerman, E., & Goransson, O. (2009). Protein kinase B activity is required for the effects of insulin on lipid metabolism in adipocytes. Physiolgy Endocrinol Metabolism, 296, 635-E646. Bedhiaf-Romdhani, S., Djemali, M., Zaklouta, M., & Iniguez, L. (2008). Monitoring crossbreeding trends in native Tunisian sheep breeds. Small Ruminant Research, 74(3), 274-8. Chaabi, M., Fayazi, J., Roshanfekr, H.A., Nazari, M., & Moradi M.H. (2022). GWAS of the sheep genome to find loci interaction affecting Fat-tail formation. Master of Science thesis, University of Agricultural Sciences and Natural Resources University of Khuzestan. Pp, 47-48. (In Persian) Chang, C.C., Chow, C.C., Tellier, L.CAM., Vattikuti, S., Purcell, S.M., & lee, J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Giga Science, 4(7), 1–16. Curik, I., Ferencakovic, M., & Solkner, M. (2014). Inbreeding and runs of homozygosity: A possible solution to an old problem. Science Direct, 166, 26-34. Ding, C., Leow, M.K., & Magkos, F. (2018). Oxytocin in metabolic homeostasis: implications for obesity and diabetes management. Obesity Reviews, 20, 22-40. Dong, K., Yang, M., Han, J., Ma, Q., Han, J., & Song, Z. (2020). Genomic analysis of worldwide sheep breeds reveals PDGFD as a major target of fat-tail selection in sheep. BMC Genomics, 21, 800. Farid, A. (1991). Slaughter and carcass characteristics of three fat-tailed sheep breed and their crosses with Corriedal and Targhee rams. Small Ruminant Research, 5, 255–71 Fariello, M.I., Servin, B., Tosser-Klopp, G., Rupp, R., Moreno, C., San Critobal, M., Boitard, S., & Consortium, I.S.G. (2014). Selection signatures in worldwide sheep populations. PLoS ONE, 9(8),103813. Gaouar, S.B.S., Lafri, M., Djaout, A., El-Bouyahiaoui, R., Bouri, A., Bouchatal, A., Maftah, A., Ciani, E., & DaSilva, A.B. (2017). Genome -wide analysis highlights genetic dilution in Algerian sheep. Heredity, 118, 293-301. GeneCards. http://www.genecards.org/cgi-bin/carddisp.pl?gene=STAT. Hirokawa, N., & Tekamura, R. (2003). Biochemical and molecular characterization of disease linked to motor proteins. Trends Biochemical Science, 28(10), 558-565. Jarvis, J.P., Scheinfeldt, L.B., Soi, S., Lambert, C., Omberg, L., Ferwerda, B., Froment, A., Bodo, J.M., Beggs, W., Hoffman, G., Mezey, J., & Tishkoff, S.A. (2012). Patterns of ancestry, signatures of natural selection, and genetic association with stature in Western African pygmies. PLoS Genetics, 8(4), 1002641. Jombart, T., & Ahmed, I. (2011). New tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070-3071. Isani, G.B., Yaqoob, M., Khan, B.B., Younas, M., & Hanjra, S.H. (2012). A comparative study of effect of docking fat-tailed sheep and crossbreeding fat-tailed and thin-tailed sheep on growth and carcass characteristics. Pakistani Journal of Agriculture Science, 49(1), 88-92. Kalds, P., Luo, Q., Sun, K., Zhou, S., Chen, Y., & Wang, X. (2021). Trends towards revealing the genetic architecture of sheep tail patterning: Promising genes and investigatory pathways. Animal Genetics, 52, 799–812. Kang, D., Zhou, G., Zhou, S., Zeng, J., Wang, X., Jiang, Y., Yang, Y., & Chen, Y. (2017). Comparative transcriptome analysis reveals potentially novel roles of Homeo box genes in adipose deposition in fat-tailed sheep. Nature, 7,14491. Kijas, J.W., Lenstra, J.A., Hayes, B., Boitard, S., Porto Neto, L.R., Cristobal, M.S., & Dalrymple, B. (2012). Genome wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biolgy, 10, e1001258. Li, A., Li, Y.Y., Wuqie, Q.B., Li, X., Zhang, H., & Wang, Y. (2023). Effect of ACADL on the differentiation of goat subcutaneous adipocyte. Animal Bioscience, 36, 829. Li, X., Yang, J., Shen, M., Xie, X.L., Liu, G.J., & Xu, Y.X. (2020). Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nature Communications, 11, 2815. Lu, Z., Liu, J., Han, J., & Yang, B. (2020). Association Between BMP2 Functional Polymorphisms and Sheep Tail Type. Animals, MDPI 10, 739. Luo, R., Zhang, X., Wang, L., Zhang, L., Li, G., & Zheng, Z. (2021). GLIS1, a potential candidate gene effect fat deposition in sheep tail. Molecular Biology Reports, 48, 4925–4931. Lv, M.Y., Jin, L.L., Sang, X.Q., Shi, W.C, Qiang, L.X., Lin, Q.Y., & Jin, S.D. (2024). Abhd2, a Candidate Gene Regulating Airway Remodeling in COPD via TGF-β. International Journal of Chronic Obstructive Pulmonary Disease, 19,33-50. MacEachern, S.B., Hayes, J., McEwan., & Goddard, M. (2009). An examination of positive selection and changing effective population size in Angus and Holstein cattle populations (Bos taurus) using a high density SNP genotyping platform and the contribution of ancient polymorphism to genomic diversity in domestic cattle. BMC Genomics, 10, 181. Manzari, Z., Mehrabani-Yeganeh, H., Nejati-Javaremi, A., Moradi, M.H., & Gholizadeh, M. (2019). Detecting selection signatures in three Iranian sheep breeds. Animal Genetics, 50 (3), 298–302. Mastrangelo, S., Bahbahani, H., Moioli, B., Ahbara, A., Abri, M.A., & Almathen, F. (2019). Novel and known signals of selection for fat deposition in domestic sheep breeds from Africa and Eurasia. PLOS ONE14, 0209632. Moioli, B., Pilla, F., & Ciani, E. (2015). Signatures of selection identify loci associated with fat tail in sheep. American Society of Animal Science, 93 (10), 4660-4669. Moradi, M.H., Farahani, A.H., & Nejati-Javaremi, A. (2017). Genome-wide evaluation of effective population size in some Iranian sheep breeds using linkage disequilibrium information. Iranian Journal Animal Science, 48(1), 39-49. (In Persian) Moradi, M.H., Nejati-Javaremi, A., Moradi-Shahrbabak, M., Dodds, K.G., & McEwan, J.C. (2012). Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC genetics, 13(1), 10 Moradi, M.H., Nejati-Javaremi, A., Moradi-Shahrbabak, M., Dodds, K.G., Brauning, R., & McEwan, J.C. (2021). Hitchhiking mapping of candidate regions associated with fat deposition in Iranian thin and Fat Tail sheep breeds suggests new insights into molecular aspects of fat tail selection. Animals, 12,1423. Nejati-Javaremi, A., Izadi, F.A., Rahmati, G.H., & Moradi, M. (2007). Selection in fat-tailed sheep based on two traits of fat-tail and body weight versus single-trait total body weight. International Journal of Agriculture Biology, 9(4), 645-8. Pan, Z., Li, S., Liu, Q., Wang, Z., Zhou, Z., Di, R., An, X., Miao, B., Wang, X., Hu, W., Guo, X., Lv, S., Li, F., Ding, G., Chu, M., & Li, X. (2019). Rapid evolution of a retro-trans posable hotspot of ovine genome underlies the alteration of BMP2expression and development of fat tails. BMC Genomics, 20, 261. Pinnapureddy, A. R., Stayner, C., McEwan, J., Baddeley, O., Forman, J., & Eccles, M. R. (2015). Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease. Orphanet journal of rare diseases, 10(1), 1-8. Scheerlinck, J. P. Y., Snibson, K. J., Bowles, V. M., & Sutton, P. (2008). Biomedical applications of sheep models: from asthma to vaccines. Trends in biotechnology, 26(5), 259-266. Sun, C., Kovacs, P., & Guiu-Jurado, E. (2021). Genetics of body fat distribution: comparative analyses in populations with European, Asian and African ancestries. Genes, 12, 841. UniProtKB Gene. http://www.uniprot.org/help/gene_name Weedon, M.N., Lango, H., Lindgren, C.M., Wallace, C., & Evans, D.M. (2008). Genome-wide association analysis identifies 20 loci that influence adult height. Nature genetics, 40, 575–83. Wei, C., Wang, H., Liu, G., Wu, M., Cao, J., Liu, Z., Liu, R., Zhao, F., Zhang, L., Lu, J., Liu, C., & Du, L. (2015). Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genomics,16, 194. Weir, B.S., & Cockerham, C.C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370. Yuan, Z., Liu, E., Liu, z., kijas, J.W., Zhu, C., Hu, S., Ma, X., Zhang, L., Du, L., Wang, H., & Wei, C. (2016). Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Animal Genetics, 48 (1), 55-66. Zhang, D., Christianson, J., Liu, Z.X., Tian, L., Choi, C.S., Neschen, S., Dong, J., Wood, P.A., & Shulman, G.I. (2010). Resistance to high-fat diet-induced obesity and insulin resistance in mice with very long-chain acyl-CoA dehydrogenase deficiency. Cell metabolism, 11, 402–411. Zhang, M., Sunaba, T., Sun, Y., Shibata, T., Sasaki, K., & Isoda, H. (2020). Acyl-CoA dehydrogenase long chain (ACADL) is a target protein of stylissatin A, an anti-inflammatory cyclic heptapeptide. Antibiotics, 73, 589–592. Zhao, F., Deng, T., Shi, L., Wang W., Zhang Q., & Du, L. (2020). Genomic Scan for Selection Signature Reveals Fat Deposition in Chinese Indigenous Sheep with Extreme Tail Types. MDPI, 10, 773. Zhi, D., Da, L., Liu, M., Cheng, C., Zhang, Y., Wang, X., Li, X., Tian, Z., Yang, Y., He, T., Long, X., Wei, W., & Cao, G. (2018). Whole genome sequencing of Hulunbuir short-tailed sheep for identifying candidate genes related to the short-tail phenotype. Genome Reports, 8(2), 377-383. Zhu, C., Li, N., Cheng, H., & Ma, Y. (2021). Genome wide association study for the identification of genes associated with tail fat deposition in Chinese sheep breeds. Biology Open, 10, 5. | ||
آمار تعداد مشاهده مقاله: 216 تعداد دریافت فایل اصل مقاله: 92 |