تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,511,324 |
تعداد دریافت فایل اصل مقاله | 98,773,690 |
تأثیر طیف نور الایدی و روش تربیت بوته بر صفات مورفولوژیکی و بیوشیمیایی گوجهفرنگی پیوندی گلخانهای | ||
علوم باغبانی ایران | ||
دوره 55، شماره 3، مهر 1403، صفحه 457-474 اصل مقاله (1.74 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2024.373618.2159 | ||
نویسندگان | ||
حمیده نیکخواه امیرآباد1؛ سید عبدالله افتخاری* 1؛ رضا صالحی2؛ مختار حیدری3 | ||
1گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، خوزستان، ایران | ||
2گروه مهندسی علوم باغبانی، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران | ||
3گروه علوم و مهندسی باغبانی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران | ||
چکیده | ||
پیوند سبزیها یک استراتژی مدیریتی نوین است که بهطور گسترده با هدف جلوگیری از تنشهای زیستی و غیر زیستی در سبزیهای میوهای در گلخانهها به کار گرفته میشود. برای این منظور گوجهفرنگی گلخانهای رقم SV4129TH بهعنوان پیوندک، روی گوجهفرنگی رقم امپرادور (بهعنوان پایه) پیوند شد. نشاهای پیوند شده دو و سه ساقهای همراه با نشاهای غیر پیوندی بهعنوان شاهد (تک ساقه بدون تربیت بوته) به مدت 30 روز در محیط کاملاً کنترلشده تحت چهار تیمار نور ال ای دی (LED) شامل نورهای قرمز، آبی، سفید (طیف کامل) و ترکیب نورهای قرمز و آبی (70 به 30 درصد) در طبقات مجزا قرار داده شدند. نشاهای رشد یافته زیر نور ال ای دی ، بعد از 30 روز به گلخانه با شرایط طبیعی انتقال یافتند. نتایج نشان داد که ارتفاع گیاه و قطر ساقه در گیاهان چند ساقهای پیوندی نسبت به گیاهان تک ساقهای غیر پیوندی بهطور معنیداری افزایش یافتند (به ترتیب 28/10، 16/13 و 65 درصد). همچنین، باردهی (میانگین تک میوه و عملکرد در بوته) در گیاهان پیوندی نسبت به گیاهان تک ساقه غیر پیوندی افزایش نشان دادند (به ترتیب 1/4 – 3/2 و 27 – 16/17 درصد). ویژگیهای بیوشیمیایی مانند لیکوپن، کل مواد جامد محلول و اسید آسکوربیک در میوه گیاهان پیوندی افزایش نشان دادند ( به ترتیب 30، 1/9 و 58/9 درصد بیشتر از گیاهان غیر پیوندی). میزان اسیدیته میوه در گیاهان غیر پیوندی برابر با 67/0 درصد بود که در مقایسه با گیاهان پیوندی بیشتر بود. | ||
کلیدواژهها | ||
پایه؛ پیوند سبزیها؛ کیفیت؛ گوجهفرنگی؛ نور قرمز؛ نور آبی؛ هرس | ||
عنوان مقاله [English] | ||
Effect of LED Light and Stem Training Methods on Morphological and Biochemical Characteristic of Greenhouse Grafted Tomato | ||
نویسندگان [English] | ||
Hamideh Nikkhah Amirabad1؛ Seyyed Abdullah Eftekhari1؛ Reza Salehi2؛ Mokhtar Heidari3 | ||
1Department of Horticultural Science, College of Agriculture, Shahid Chamran University of Ahvaz, Khuzestan, Iran. | ||
2Department of Horticultural Science, College of Agriculture, University of Tehran, Karaj, Iran | ||
34. Department of Horticultural Science, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran | ||
چکیده [English] | ||
Vegetable grafting is an emerging management technique extensively employed to mitigate biotic and abiotic stresses in greenhouse-grown fruits and vegetables. In this study, the ‘SV4129TH’ tomato cultivar was grafted onto the ‘Emperdor’ rootstock. Grafted seedlings with two and three stems, as well as non-grafted control seedlings, were grown for 30 days in a controlled environment under four different LED light treatments: pure red, pure blue, white (full spectrum), and a combination of red and blue (30% and 70%, respectively). The findings indicate that the combination of red and blue light (RB) is the most effective light source for enhancing the quality of grafted tomato seedlings. After 30 days under these light conditions, evaluations revealed significant increases in morphological traits for grafted multi-stemmed plants compared to non-grafted single-stemmed plants, with height, stem diameter, and number of leaves increasing by 10.28%, 13.16%, and 65%, respectively. The yield and average fruit size in two-stem and three-stem grafted plants were 3.2-4.1% and 16.17-27% higher than those in non-grafted single-stemmed plants. Biochemical attributes such as lycopene, soluble solids, and vitamin C were 30%, 9.1%, and 9.58% higher in grafted plants, respectively, compared to non-grafted plants. Non-grafted plants had an acidity level of 0.67%, which was higher than that of grafted plants. Overall, the most productive and efficient option was the three stemmed grafted tomatoes, which produced 11.9 kg per plant. | ||
کلیدواژهها [English] | ||
Blue light, Pruning, Red light, Stock, Tomato, Vegetable Grafting | ||
مراجع | ||
سلطانی، سیدرضا؛ آروئی، حسین؛ صالحی، رضا و نعمتی، سید حسین. (1401). تأثیر طیفهای مختلف نور LED بر ویژگیهای مورفولوژیکی و محتوای عناصر معدنی در نشاهای پیوندی و غیر پیوندی گوجهفرنگی. نشریه علوم باغبانی ایران، 54(53)، 977-988. https://doi.org/10.22059/ijhs.2022.340135.2010 رحمتیان، امیر؛ دلشاد. مجتبی؛ صالحی محمدی، رضا و موسوی رحیمی، مسعود. (1391). بررسی رشد و عملکرد گوجهفرنگی گلخانه ایی رقم سیندا تحت تأثیر پیوند، روش تربیت و تنگ میوه در کشت هیدروپونیک. نشریه علوم باغبانی ایران، 43(4)، 423-435. https://doi.org/10.22059/ijhs.2012.29377
REFERENCES Afrashte, S., Rusta, H., & Zamani Bahramabadi, A. (2021). The effect of type and concentration of nutrient solution on the physiological and morphological characteristics of strawberries in hydroponic cultivation. Journal of Soil and Plant Interactions, 12 (2), 63-75. http://dx.doi.org/10.47176/jspi.12.1.20072 Al-Harbi, A., Hejazi, A., & Al-Omran, A. (2017). Responses of grafted tomato (Solanum lycopersiocon L.) to abiotic stresses in Saudi Arabia. Saudi Journal of Biological Sciences, 24 (6), 1274–1280. https://doi.org/10.1016/j.sjbs.2016.01.005 Ara, N., Bashar, M. K., Begum, S., & Kakon, S. S. (2007). Effect of spacing and stem pruning on the growth and yield of tomato. International Journal of Sustainable Crop Production 2, 35-39. Buajaila, F. A., Devi, P., & Miles, C. A. (2018). Effect of environment on survival of eggplant, pepper, and tomato in a small-scale healing chamber. HortTechnology, 28 (5), 668–675. http://dx.doi.org/10.21273/HORTTECH04103-18 Carmach, C., Castro, M., Peñaloza, P., Guzmán, L., Marchant, M. J., Valdebenito, S., & Kopaitic, I. (2023). Positive effect of green photo-selective filter on graft union formation in tomatoes. Plants, 12, 3402. https://doi.org/10.3390/ plants12193402 Djidonou, D., Zhao, X., Simonne, E. H., Koch, K. E. & Erickso, J. E. (2013). Yield, water-, and nitrogen-use efficiency in field-grown, grafted tomatoes. HortScience, 48 (4), 485-492. http://dx.doi.org/10.21273/HORTSCI.48.4.485 Edelstein, M., Burger, Y., Horev, C., Porat, A., Meir, A., & Cohen, R. (2004). Assessing the effect of genetic and anatomic variation of Cucurbita rootstocks on vigor, survival and yield of grafted melons. Journal of Horticultural Science & Biotechnology. 79, 370-374. https://doi.org/10.1080/14620316.2004.11511775 Farneti, B. (2014). Tomato quality: from the field to the consumer interactions between genotype, cultivation and postharvest conditions. [Doctoral dissertation, Wageningen University]. Fernandez-Garcia, N., Martinez, V. & Carvajal, M. (2004). Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. Journal of Plant Nutrition and Soil Science. 167, 616– 622. http://dx.doi.org/10.1002/jpln.200420416 Flores, B. F., Sanchez-Bel, P., Estan, M. T., Martinez-Rodriguez, M. M., Moyano, E., Morales, B., Campos, J. F., Garcia-Abellan, J. O., Egea, M. I., Fernandez-Garcia, N., Romojaro, F., & Bolarin, M. C. (2010). The effectiveness of grafting to improve tomato fruit quality. Scientia Horticulturae, 125(3), 211–217. https://doi.org/10.1016/j.scienta.2010.03.026 Gaion, L. A., Braz, L. T., & Carvalho, R. F. (2018). Grafting in vegetable crops: a great technique for agriculture. International Journal of Vegetable Science, 24 (1), 85–102. https://doi.org/10.1080/19315260.2017.1357062 Heuvelink, E., (2005). Developmental processes. In: Heuvelink, E. (Ed.), Tomatoes (pp. 53–83). Crop Production Science in Horticulture Series 13. CABI Pub., Wallingford, Oxfordshire, Hu, B. (2016). Improved tomato grafting technologies. [Doctoral dissertation, Ohio State University]. Ilić, Z. S., & Fallik, E. (2017). Light quality manipulation improves vegetable quality at harvest and postharvest: A review. Environmental and Experimental Botany, 139, 79–90. http://dx.doi.org/10.1016/j.envexpbot.2017.04.006 Jing, X., Wang, H., Gong, B., Liu, S., Wei, M., Ai, X., Li, Y., & Shi, Q. (2018). Secondary and sucrose metabolism regulated by different light quality combinations involved in melon tolerance to powdery mildew. Plant Physiology and Biochemistry, 124, 77–87. https://doi.org/10.1016/j.plaphy.2017.12.039 . Karaca, F., Yetişir, H., Solmaz, İ., Candir, E., Kurt, Ş., Sari, N., & Güler, Z. (2012). Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon: plant growth, yield and quality. Turkish Journal of Agriculture and Forestry, 36 (2), 167–177. http://dx.doi.org/10.3906/tar-1101-1716 Lamptey, S., & Koomson, E. (2021). The role of staking and pruning methods on yield and profitability of tomato (Solanum lycopersicum L.) production in the guinea savanna zone of Ghana. Advances in Agriculture, 2021 (3&4), 1-7. https://doi.org/10.1155/2021/5570567 Lee J. M., & Oda, M. (2003). Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews, 28, 61–124. https://doi.org/10.1002/9780470650851.ch2 Lee, J. M., Kubota, C., Tsao, S. J., Bie., Z., Echevarria, P. H., Morra, L., & Oda, M. (2010). Current status of vegetable grafting: diffusion, grafting techniques. Scientia Horticulturae 127, 93-105. http://dx.doi.org/10.1016/j.scienta.2010.08.003 Lee, K. M., Lim, C. H., Muneer, S., & Jeong, B.R. (2016). Functional vascular connections and light quality effects on tomato grafted unions. Scientia Horticulturae, 201, 306–317. http://dx.doi.org/10.1016/j.scienta.2016.02.013. Lhamo, T., Gyalmo, T., Pem, T., & Bajgai, Y. (2022). Effect of different pruning systems on yield and quality of tomato grown under greenhouse. Bhutanese Journal of Agriculture, 5(1), 71–82. https://doi.org/10.55925/btagr.22.5106 Li, F., Li, Y., Li, S., Wu, G., Niu, X., & Shen, A. (2021). Green light promotes healing and root regeneration in double-root-cutting grafted tomato seedlings. Scientia Horticulturae. 289, 110503 https://doi.org/10.1016/j.scienta.2021.110503 Maboko, M. M., & Du Plooy, C. P. (2008). Effect of pruning on yield and quality of hydroponically grown cherry tomato (Lycopersicon esculentum). South African Journal of Plant and Soil, 25 (3), 178-181. http://dx.doi.org/10.1080/02571862.2008.10639914 National Canners Association. (1968). Laboratory manual for food canners and processors. (3d ed.) AVI Publishing Company. Westport, Conn. Mngoma, M. F. (2020). Investigating the effect of trellising and stem training methods on the horticultural performance of indeterminate tomatoes grown in dome shape tunnels. [Master of Science thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa]. Mohammed, S. M. T., Humidan, M., Boras, M., & Abdalla, O. A. (2009). Effect of grafting tomato on different rootstocks on growth and productivity under glasshouse conditions. Asian Journal of Agricultural Research, 3(2), 47-54. http://dx.doi.org/10.3923/ajar.2009.47.54 Moosavi-Nezhad, M., Salehi, R., Aliniaeifard, S., Tsaniklidis, G., Woltering, E. J., Fanourakis, D., Zuk-Gołaszewska, K., & Kalaji, H. M. (2021). Blue light improves photosynthetic performance during healing and acclimatization of grafted watermelon seedlings. International Journal of Molecular Sciences, 22,8043. https://doi.org/10.3390/ijms22158043 Mourão, I., Brito, L. M., & Moura, L. (2017). The effect of pruning systems on yield and fruit quality of grafted tomato. Horticultura Brasileira, 35, 247-251. http://dx.doi.org/10.1590/S0102-053620170215 Pathak, S., Akhade, P., Gajanan Bhojane, K., Sadar, D., Folane, P., Biyani, K. R., & Pathak, S. S. (2020). A review on recent techniques of extraction and isolation of lycopene from tomato. International Journal of Research and Review, 7(4), 478-490. Perin, L., Peil, R. M. N., Signorini, C., Grolli, P. R., Streck, E. A., da Rosa, D. S. B., Neutzling, C., Marques, G. N., & Wieth, A. R. (2023). Effect of grafting and number of stems on plant growth, yield and fruit quality of soilless tomatoes. Australian Journal of Crop Science, 17(1), 99–106. https://doi.org/10.21475/ajcs.23.17.01.p3813 Pugalendhi, L., Bharathi, S., Priya, R. S., & Velmurugan, M. (2021). Biochemical and quality attributes of grafted tomato (Solanum lycopesicum L.). The Pharma Innovation Journal, 10 (8), 333–338. Pulgar, G., Rivero, R. M., Moreno, D. A., Lopez-Lefebre, L. R., Villora, G., Baghour, M., & Romero, L. (1998). Micronutrientes en hojas de sandía injertadas. VII Simposio Nacional-III Ibérico Sobre Nutrición Mineral de Las Plantas. Gárate A. (Ed.), Universidad Autónoma de Madrid, Madrid, 255–260. Purkayastha, M. Das, & Mahanta, C. L. (2011). Physicochemical properties of five different tomato cultivars of Meghalaya and their suitability in food processing. Journal of Food Science, 5(12), 657–667. Rahmatian, A., Delshad, M., & Salehi, R. (2014). Effect of grafting on growth, yield and fruit quality of single and double stemmed tomato plants grown hydroponically. Horticulture Environment and Biotechnology, 55(2), 115–119. https://doi.org/10.1007/s13580-014-0167-6 Rivard, C.L. & F. J. Louws. (2008). Grafting to manage soilborne diseases in heirloom tomato production. HortScience, 43(7), 2104-2111. http://dx.doi.org/10.21273/HORTSCI.43.7.2104 Rivard, C. L., O'Connell, S., M. M., Peet, & Louws, F. J. (2010). Grafting tomato with interspecific rootstock to manage diseases caused by Sclerotium rolfsii and southern root-knot nematode. Plant Disease. 94(8), 1015-1021. http://dx.doi.org/10.1094/PDIS-94-8-1015 Sablani, S. S., Opara, L. U., & Al-Balushi, K. (2006). Influence of bruising and storage temperature on vitamin C content of tomato fruit. Journal of Food Agriculture and Environment, 4 (1), 54-56. Sakata, Y., Ohara, T. & Sugiyama, M. 2008. The history of melon and cucumber grafting in Japan. Acta Horticulturae. 767, 217–228. http://dx.doi.org/10.17660/ActaHortic.2008.767.22 Schwarz, D., Rouphael, Y., Colla, G. & Venema, J. H. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127(2), 162-171. http://dx.doi.org/10.1016/j.scienta.2010.09.016 Singh, H., Kumar, P., Chaudhari, S., & Edelstein, M. (2017). Tomato grafting: a global perspective. HortScience, 52(10), 1328-1336. http://dx.doi.org/10.21273/HORTSCI11996-17 Soare, R., Dinu, M., & Babeanu, C. (2018). The effect of using grafted seedlings on the yield and quality of tomatoes grown in greenhouses. Horticultural Science, 45 (2), 76–82 http://dx.doi.org/10.17221/214/2016-HORTSCI Tepic, A. N., Vejicic, B. L., Takac, A. J., Kristic, B. D., & Calic L. J. (2006). Chemical heterogeneity of tomato inbred lines. Acta Periodica Technologica, 37, 45-50. http://dx.doi.org/10.2298/APT0637045T Turhan, A., Ozmen, N., Serbeci, M. S., & Seniz, V. (2011). Effects of grafting on different rootstocks on tomato fruit yield and quality. Horticultural Science, 38(4), 142–149. http://dx.doi.org/10.17221/51/2011-HORTSCI Yang, X., Hu, X., Zhang, M., Xu, J., Ren, R., Liu, G., & Chen, X. (2016). Effect of low night temperature on graft union formation in watermelon grafted onto bottle gourd rootstock. Scientia Horticulturae, 212, 29-34. https://doi.org/10.1016/j.scienta.2016.09.010 Yousef, A. F., Ali, M. M., Rizwan, H. M., Ahmed, M. A. A., Ali, W. M., Kalaji, H. M., Elsheery, N., Wróbel, J., Xu, Y., & Chen, F. (2021 a). Effects of light spectrum on morphophysiological traits of grafted tomato seedlings. PLOS ONE, 16, e0250210. https://doi.org/10.1371/journal.pone.0250210 Yousef, A. F., Ali, M. M., Rizwan, H. M., Gad, A. G., Liang, D., Binqi, L., Kalaji, H. M., Wróbel, J., Xu, Y., & Chen, F. (2021 b). Light quality and quantity affect graft union formation of tomato plants. Scientific Reports, 11(1), 9870. https://www.nature.com/articles/s41598-021-88971-5 Zhang, Z., Cao, B., Gao, S., & Xu, K. (2019). Grafting improves tomato drought tolerance through enhancing photosynthetic capacity and reducing ROS accumulation. Protoplasma, 256(4), 1013–1024. https://link.springer.com/article/10.1007/s00709-019-01357-3 | ||
آمار تعداد مشاهده مقاله: 146 تعداد دریافت فایل اصل مقاله: 99 |