![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 162 |
تعداد شمارهها | 6,579 |
تعداد مقالات | 71,072 |
تعداد مشاهده مقاله | 125,681,170 |
تعداد دریافت فایل اصل مقاله | 98,911,466 |
شبیهسازی رواناب با مدل HEC-HMS و آنالیز حساسیت پارامترهای روندیابی هیدروگراف سیل با استفاده از الگوریتم تکامل تفاضلی (مطالعه موردی : حوضه آبریز رودخانه مرک) | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 4، تیر 1403، صفحه 519-536 اصل مقاله (2.5 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.371600.669656 | ||
نویسندگان | ||
کامران عزیزی؛ مریم حافظ پرست مودت* | ||
گروه مهندسی آب، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران | ||
چکیده | ||
شبیهسازی بارش رواناب و تولید هیدروگراف، کاربرد فراوانی در تحلیل رفتار حوضه در مقابل بارش، محاسبه حجم و پیک سیلاب، میزان تلفات و امکان طراحی ابعاد سازهها دارد. یکی از رایجترین مدلهای شبیهساز HEC-HMS میباشد. در این پژوهش با هدف آنالیز حساسیت پارامترهای روندیابی هیدروگراف سیل در حوضه آبریز رودخانه مرک، ابتدا با افزونه HEC-GeoHMS در محیط Arc GIS و نقشه DEM منطقه، خصوصیات فیزیوگرافی حوضه ساخته و در مدل HEC-HMS فراخوانی گردید. سپس با وارد نمودن دادههای سه رخداد سیلاب و بارش متناظر آن، هیدروگراف محاسباتی ایجاد و جهت واسنجی ابتدا بهروش سعی وخطا مدل در محدودهای مطلوب قرار گرفت که بتوان با استفاده از الگوریتم تکامل تفاضلی بهینهسازی را انجام داد. در بهینهسازی با تابع هدف بهحداقل رساندن میانگین مجموع مربعات خطا، پارامترهای K و X ماسکینگام که حساسیت ویژهای در تولید هیدروگراف دارند بهینه و کارایی مدل را در رده عالی قرار داد بطوریکه برای رخداد سیلاب تاریخ آبان 1394 معادل نوامبر2015 و با شرط توقف 50 تکرار (NSE=0.871, PBIAS=25.52, RMSE=0.4, NRMSE=2.63)، در رخداد سیلاب فروردین 1395 معادل مارس2016 ( NSE=0.731, PBIAS=28.82, RMSE=0.5, NRMSE=1.01) و در رخداد اسفند 1398 معادل فوریه2020 (NSE=0.834, PBIAS=7.96, RMSE=0.4, NRMSE=0.95) قرار گرفت که نشان از کارایی عالی مدل بعد از بهینهسازی ضرایب ماسکینگام با الگوریتم تکامل تفاضلی(DE) دارد. | ||
کلیدواژهها | ||
HEC-GeoHMS؛ HEC-HMS؛ آنالیز حساسیت؛ ماسکینگام؛ مرک | ||
عنوان مقاله [English] | ||
Runoff simulation with HEC-HMS model and sensitivity analysis of flood hydrograph trending parameters using differential evolution algorithm (case study: Merck River catchment) | ||
نویسندگان [English] | ||
Kamran Azizi؛ Maryam HafezParast mavedat | ||
Department of Water Engineering, Faculty of Agriculture, Razi University of Kermanshah, Iran | ||
چکیده [English] | ||
Simulation of runoff and hydrograph production is widely used in analyzing the behavior of basin against precipitation, calculating the volume and peak of floods, the amount of losses and the possibility of designing the dimensions of structures. HEC-HMS is one of the most common simulator models In this study, with the aim of analyzing the sensitivity of flood hydrograph routing parameters in the Merk River basin, first, the physiographic characteristics of the basin were constructed with the HEC-GeoHMS plugin in the Arc GIS environment and the DEM map of the area and they were called in the HEC-HMS model. then by entering the three flood event data and its corresponding precipitation, computational hydrograph is created. For calibration, at first by trial and error, the model was placed in a suitable range which can be optimized using differential evolution algorithm. In optimizing the target function to make the average at least of the sum of squares of error, the K and X Muskingum parameters, which are particularly sensitive to hydrograph production, placed the model optimization and its performance in the excellent category so that for the event of November 2015 floods and a stop of 50 iteration (NSE=0.871, PBias=25.52, RMSE=0.4, NRMSE=2.63), for the event of March 2016 floods (NSE=0.731, PBias=28.82, RMSE=0.5, NRMSE=1.01) and in February 2020 (NSE=0.834, PBias=7.96, RMSE=0.4, NRMSE=0.95) which indicate an excellent performance of the model after optimization of the Muskingum coefficients by differential evolution algorithm (DE). | ||
کلیدواژهها [English] | ||
HEC-GeoHMS, HEC-HMS, Merck, Muskingum, Sensitivity analysis | ||
مراجع | ||
Akbari, Gholamhossein., Barati, Reza and Hosseinnejad Devin, Alireza (2019). Investigation of different methods of Muskingum Conge method in natural waterways. Iran Water Resources Research, 7(3), 62-74. (inPersian) Alamshahi, hale., Azizian, Asghar and Broca, Luca (2020). Integration of HEC-HMS hydrological model and satellite precipitation data with high temporal and spatial resolution for flood simulation. Iran Irrigation and Drainage Journal, 14(3), 724-739. (inPersian) Asadi, Masoumeh., Jabari, Iraj and Hesadi, Homayun (2019). Flood modeling in arid and semi-arid areas using the HEC-HMS model (case study: Minab Esteghlal Dam catchment area). Quantitative Geomorphology Research, 8(3), 17-33. (inPersian) Barati, Reza and Akbari, Gholamhossein (2013). Comparison of hydrological models for flood trends in rivers. Iranian Water Research Journal, 6(11), 105-114. (inPersian) Daide, F., Afgane, R., Lahrach, A., Chaouni, A., Msaddek, M. and Elhasnaoui, I (2021). Application of the HEC-HMS hydrological model in the Beht watershed (Morocco). E3S Web of Conferences 314, 05003. https://doi.org/10.1051/e3sconf/202131405003 Damadi, Sakineh., Dehwari, Abdul Hamid., Dehmarde Qala Nou, Mohammadreza and Ebrahimian, Mehbobeh (2020). Simulation of flood hydrograph using Hec-Hms model in Sarbaz watershed of Sistan and Baluchistan. Watershed Management Journal, 11(22), 287-295. (inPersian) Dooge J.C.I. (1973). Linear theory of hydrologic systems. USDA, Agric. Res. Serv., Tech, Bull., No. 1468 Farahani, N., Farzin, S. and Karami, H (2023). Flood routing by Kidney algorithm and Muskingum model. Natural Hazards. 119, 2251–2269, Farzin, S., Singh, P., Karami, H., Farahani, N., Ehteram, M., Kisi, O., Allawi, M., Mohd, N., and El-Shafie, A. (2018). Flood Routing in River Reaches Using a Three-Parameter Muskingum Model Coupled with an Improved Bat Algorithm. journal Water, 10(9), 11-30; https://doi.org/10.3390/w10091130 Fiaz, H., Wu, R., and Yu, K. (2021). Application of Physically Based Semi-Distributed Hec-Hms Model for Flow Simulation in Tributary Catchments of Kaohsiung Area Taiwan. Journal of Marine Science and Technology, 29(1), 42-62. doi:10.51400/2709-6998.1003 Hamdan, A.N.A., Almuktar, S. and Scholz, M. (2021). Rainfall-Runoff Modeling Using the HEC-HMS Model for the Al-Adhaim River Catchment, Northern Iraq. Hydrology, 8(2), 58. https://doi.org/10.3390/hydrology8020058. Hegazy, M. n., El-Fakharany, M. A., Abdo, A. M. and Mansour, n. m. (2023). Estimation of expected peak discharge and flood volume of the Heliopolis basin, East Cairo, Egypt, using RS and WMS program. The Egyptian Journal of Remote Sensing and Space Sciences 6(3), 676-690. https://doi.org/10.1016/j.ejrs.2023.07.010 Heydari Besafar, Ali., Hessari, Behzad and Samadian, Morteza (2020). Sensitivity analysis of parameters affecting design flood using Hec-Hms mathematical model (case study: Sardasht Dam). Ecohydrology, 7(4), 951-965. (inPersian) Hosseini, S. M. (2009). Application of spreadsheets in developing flexible multiple-reach and multiple branch methods of Muskingum flood routing. Computer Applications in Engineering Education, 17(4): 448–454. Janicka, E. and Kanclerz, J. (2023). Assessing the Effects of Urbanization on Water Flow and Flood Events Using the HEC-HMS Model in the Wirynka River Catchment, Poland. Water, 15(1), 86. https://doi.org/10.3390/w15010086. Lee, E.H. (2021). Development of a New 8-Parameter Muskingum Flood Routing Model with Modified Inflows. journal Water, 13(22), 3170. https://doi.org/10.3390/w13223170 Linh, N. and Minh, h. (2022). Global Land Surface Data Applications in Flood Hydrologic Modeling Using HEC–GeoHMS and HEC–HMS for ThreeWatersheds in Southeast Asia. Vietnam Journal of Hydrometeorology 3(12), 9-22. DOI:10.36335/VNJHM.2022(12).9-22 Mansouri, Ramin and Turabi, Hassan (2015). Application of differential evolution (DE) algorithm for optimization of water distribution network (case study: Ismailabad pressurized irrigation network). Water and Soil Science Journal, 25(2/4), 81-95. (inPersian) Mohammed Ahmed Musa Eisa, B., Saeed, A. B., Dafalla, M. S. and Mohammed Ali Yhia Omer, A. (2022). Delineation of Wadi Haseeb Watershed from Digital Elevation Model Using HEC-Geo-HMS in ArcGIS, East Nile, Sudan. East African Scholars Journal of Agriculture and Life Sciences, 5(10), 180-187. DOI:10.36349/easjals.2022.v05i10.001 Motshefa, Behzad., Akhund Ali, Ali Mohammad., Sharifi, Mohammad Reza and Zarei, Haider (2023). Evaluation of the effect of the formation of the flow pattern on the outlet hydrograph of the watershed in the HEC-HMS simulator (case study: Yellow River watershed). Irrigation Science and Engineering, 46(2), 1-14. (inPersian) Nadeem, M., u., Waheed, Z., Ghaffar, M., M., J., Hamza, Z., A., Nawaz, W., W., Hameed, M., F., Zeeshan, A., Qamar, S. and Masood, K. (2022). Application of HEC-HMS for flood forecasting in hazara catchment Pakistan, south Asia. International Journal of Hydrology. 6(1), 7-12. doi:10.15406/ijh.2022.06.00296 Naimi Houshmand, Farhad and Ahmadzadeh Kaliber, Fariborz (2022). Simulation of design flood hydrographs in Idogmush catchment using Hec-Hms model. Journal of Water and Soil Sciences, 26(3), 55-67. (inPersian) Naresh, A. and Gopal Naik, M. (2023). Urban Rainfall-Runoff Modeling Using HEC-HMS and Artificial Neural Networks: A Case Study. International Journal of Mathematical, Engineering and Management Sciences, 8(3), 403-423. doi:10.33889/IJMEMS.2023.8.3.023 Parveen, Mansour (2019). Zoning of areas susceptible to underground water feeding in Mahidasht Kermanshah watershed. Hydrogeomorphology, 7(22), 129-153. (inPersian) Sagathia, J., Kotecha, N., Patel, H. and Patel, A. (2020, February 21-22,2020). Impact Assessment of Urban Flood in Surat City using HEC-HMS and GIS. International Conference on Innovative Advancement in Engineering and Technology. Jaipur NationalUniversity, Jaipur, India. Singh, V. P. (1988). Hydrologic Systems: Rainfall-Runoff Modeling. Prentice Hall, N.J. Pearson College Div (January 1, 1988). Soltani, Saeed., Mokhtari, Fahima., Mohit, Puria and Kalhar, Atefe (2021). Investigating the effect of change of use on the increase of runoff using Hec-HMS hydrological model in Khorram Abad watershed. Scientific Research Journal of Desert Ecosystem Engineering, 10(30), 81-92. (inPersian) Wang, W., Tian, W., Xu, D., Chau, K., Ma, Q. and Liu, C. (2023). Muskingum Models’ Development and their Parameter Estimation: A State-of-the-art Review. Water Resources Management. 37, 3129–3150. Zahiri, Abdul Reza., Asghari, Salim and Dehghani, Amir Ahmad (2017). Trending of river floods by multi-interval Muskingum method. Journal of water and sustainable development, 4(1), 81-88. (inPersian) | ||
آمار تعداد مشاهده مقاله: 239 تعداد دریافت فایل اصل مقاله: 223 |