تعداد نشریات | 161 |
تعداد شمارهها | 6,556 |
تعداد مقالات | 70,750 |
تعداد مشاهده مقاله | 124,752,454 |
تعداد دریافت فایل اصل مقاله | 97,960,161 |
تحلیل فضایی دمای شبانه سطح زمین در ایران با استفاده از دادههای گذرشبانه سنجنده MODIS | ||
فیزیک زمین و فضا | ||
مقاله 8، دوره 50، شماره 3، مهر 1403، صفحه 677-705 اصل مقاله (2.81 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2024.364448.1007557 | ||
نویسندگان | ||
المیرا سرهان؛ عباس مفیدی* ؛ عباسعلی داداشی رودباری؛ مسعود مینایی | ||
گروه جغرافیا، دانشکده ادبیات و علوم انسانى دکتر على شریعتى، دانشگاه فردوسی مشهد، مشهد، ایران. | ||
چکیده | ||
هدف اصلی پژوهش حاضر بررسی اقلیمشناسی LST شبانه در ایران است. برای این منظور از محصول MYD11A1 (نسخه 1/6) سنجنده MODIS ماهواره Aqua با تفکیک افقی 1000 متر برای یک دوره 19 ساله (2021-2003) استفاده شد. دادههای ماهوارهای با استفاده از دادههای روزانه دمای خاک تعداد 174 ایستگاه هواشناسی درستی سنجی شدند. درستی سنجی دادههای ماهوارهای نشان داد که، مقادیر متوسط پهنهای دو سنجه ریشه میانگین مربعات خطا (RMSE) و متوسط اریبی خطا (MBE) در قیاس با دادههای ایستگاهی بهترتیب ℃7/1 و ℃39/1 میباشد. همچنین، نتایج بهکارگیری سنجه PBias بیانگر غلبه کم برآوردی در دادههای LST شبانه در قیاس با دمای خاک است. در مجموع، سنجنده MODIS دمای سطح زمین را در بیشتر مناطق کشور با خطایی کمتر از %10 برآورد میکند که بیانگر کارایی بالای محصول MYD11A1 در برآورد LST شبانه ایران است. یافتهها نشان داد که، ترکیب ارتفاع و عرض جغرافیایی بالا در تغییرات فصلی LST شبانه ایران از اهمیت قابلتوجهی برخوردار است. بررسی سیر تکوین درون سالانه دما، نشاندهنده آن است که، بالاترین تمرکز دمایی درون سالانه و بیشترین همگنی در فصل تابستان مشاهده میشود. در مقابل، بیشترین میزان ناهمگنی مربوط به فصل پاییز است. بررسی اختلاف بین کمینه و بیشینه دمای شبانه بیانگر وقوع بالاترین و پایینترین مقادیر اختلاف دمای شبانه بهترتیب در بیابان لوت و نوار باریک سواحل جنوبی دریای خزر میباشد. بررسی جغرافیایی نقاط سرد، از قرارگیری سردترین نقاط ایران در قلل مرتفع، واقع در عرضهای جغرافیایی بالا، حکایت دارد. بالاترین تمرکز جغرافیایی نقاط سرد ایران در فصل تابستان و بیشترین پراکنش فضایی آنها در فصل زمستان، بهویژه در ماه دسامبر، مشاهده میشود. یافتهها همچنین بیانگر وجود یک سیر تکوین منظم سالانه در نحوه استقرار نقاط سرد ایران است. | ||
کلیدواژهها | ||
اختلاف دمای شبانه؛ سنجنده MODIS؛ دمای سطح زمین؛ نقاط سرد ایران؛ تحلیل فضایی | ||
عنوان مقاله [English] | ||
Spatial analysis of nighttime land surface temperature in Iran using MODIS-Aqua data | ||
نویسندگان [English] | ||
Elmira Sarhan؛ Abbas Mofidi؛ Abbas Ali Dadashi-Roudbari؛ Masoud Minaei | ||
Department of Geography, Faculty of Dr. Ali Shariati Letters and Humanities, Ferdowsi University of Mashhad, Mashhad, Iran. | ||
چکیده [English] | ||
The main purpose of the current research is to investigate the nighttime LST climatology in Iran. The study of the seasonal regime and annual temperature differences along with the identification of the role of different temperature thresholds and the spatial analysis of Iran's cold spots are among the climatic features studied in the current research. For this purpose, the MYD11A1 product (version 6.1) of the MODIS which is a key instrument onboard the Aqua Satellite with a horizontal resolution of 1000 meters has been used for a period of 19 years (2003-2021). This product is related to the nighttime passage of the satellite at 1:30 local time. Satellite data were validated using daily soil temperature data from 174 meteorological stations. The accuracy of satellite data showed that the area average values of root mean square error (RMSE) and mean bias error (MBE) compared with station data are 1.7℃ and 1.39℃ respectively. Also, the PBias statistics results show that the underestimation prevails in the night LST data compared to the soil temperature. In total, the MODIS sensor estimates LST in most regions of the country with an error of less than 10%, which indicates the high efficiency of the MYD11A1 product in assessing Iran's nighttime LST. The findings showed that the combination of altitude and higher latitude has significant importance in the seasonal changes of nighttime minimum LST in Iran. So, the combination of these two factors plays an important role in the occurrence of the lowest night temperatures in the country in the middle parts of central Alborz and the highlands of Azerbaijan. Thus, the longest period of dominance of low temperatures in Iran is related to 38°N and 36°N latitudes, respectively. The results also indicate that the prevailing temperature zones in Iran fluctuate from the minimum temperature in January to the maximum temperature in July. In the transitional seasons, only April and October have distinct and independent temperature identities, and the rest of the months of the transitional seasons are either connected to winter or connected to summer according to the pattern. Examining the course of intra-annual temperature changes shows that the highest intra-annual temperature concentration and the highest homogeneity are observed in the summer season. On the other hand, the highest level of heterogeneity and the lowest level of temperature concentration are related to the autumn season. Examining the average nighttime temperature difference in Iran also shows that the highest values of the earth surface temperature difference occur in the winter season and the lowest values in the summer season. In a general view, the temperature difference curve fluctuates between a maximum of 56.6℃ in January and a minimum of 46.5℃ in July. Spatial analysis of nighttime temperature difference showed that the Lut desert experiences the highest average values of nighttime temperature difference throughout the year. In general, lack of moisture, very low percentage of cloud cover, lack of vegetation cover, and very low soil moisture seem to have led to high nighttime temperature fluctuations in the Lut desert. On the other hand, a narrow strip along the southern coastline of the Caspian Sea experiences the lowest nighttime temperature difference in the country. Clearly, the high humidity of the southern coastline of the Caspian Sea plays the main role in reducing the temperature fluctuations of this region. The geographical analysis of cold spots indicates that the coldest spots of Iran are observed in the high peaks, located in high latitudes. Also, the highest geographical concentration of cold spots in Iran is related to the summer season. Meanwhile, the largest spatial distribution of Iran's cold spots can be seen in the winter season, especially in December. The findings also indicate the existence of a regular annual cycle in the spatial arrangement of cold spots in Iran. In this way, in the warm period of the year, the cold spots of Iran are concentrated only in the middle part of the central Alborz. With the beginning of the cold period of the year, we are witnessing a northwest shift of cold spots toward the highlands of Azerbaijan. So that a bimodal pattern replaces the summer concentrated pattern. The bimodal pattern continues at the height of winter with the dispersion of cold spots in Alborz and Azerbaijan, but with the arrival of the warm period of the year, a southeast-ward shift of cold spots towards the Alborz Mountains begins, with the cold spots completely concentrated on the Damavand peak, this annual cycle ends in the summer season. | ||
کلیدواژهها [English] | ||
Land Surface Temperature, Nighttime temperature difference, MODIS, Iran’s cold spots, spatial Analysis | ||
مراجع | ||
احمدی، م. و داداشی رودباری، ع. (1396). شناسایی جزایر حرارتی شهری مبتنی بر رویکرد زیستمحیطی، مطالعه موردی (کلانشهر اصفهان). جغرافیا و برنامهریزی محیطی، 28(3)، 1-20.
احمدی، م.؛ داداشی رودباری، ع. و احمدی، ح. (1397-الف). پایش دمای شب هنگام سطح زمین در گستره ایران مبتنی بر برونداد سنجنده MODIS. فصلنامه تحقیقات جغرافیایی، 33(1)، 174-190.
احمدی، م.؛ داداشی رودباری، ع. و احمدی، ح. (1397-ب). واکاوی دمای روزهنگام سطح زمین ایران مبتنی بر برونداد سنجنده MODIS. فصلنامه علوم محیطی، 16(1)، 47-68.
احمدی، م.؛ داداشی رودباری، ع. و اسفندیاری، ن. (1398). پایش جزایر حرارتی شهری با رویکرد تکاملی فرکتال ویژه (FNEA) (مطالعه موردی: کلانشهر تهران). سنجش از دور و GIS ایران، 11(1)، 93-112.
حلبیان، ا.ح. و صلحی، س. (1399). بررسی ارتباط برف-پوش (SC) و دمای سطح زمین (LST) با مولفه توپوگرافیکی ارتفاع در ارتفاعات البرز مرکزی. پژوهشهای ژئومورفولوژی کمی، 9(2)، 227-249.
شجاعیزاده، ک.؛ احمدی، م. و داداشی رودباری، ع. (1402). ارتباط شاخصهای پوششگیاهی با رخداد آتشسوزی در نواحی رویشی ایران. جغرافیا و مخاطرات محیطی، 12(4)، 99-116.
کیخسروی کیانی، م.ص. و مسعودیان؛ س.ا. (1396). واکاوی نقش دمای رویه زمین در پراکنش پوشش برف در ایران به کمک دادههای ماهوارهای. جغرافیا و توسعه، 49، 189-204.
مرادی، م.؛ صلاحی، ب. و مسعودیان، س.ا. (1395الف). پهنه بندی دمای رویه ی زمین با دادههای مودیس. مجله مخاطرات محیط طبیعی، 5(7)، 101-116.
مرادی، م.؛ صلاحی، ب. و مسعودیان، س.ا. (1395ب). بررسی شیب دمای سطح زمین در ایران با دادههای روزهنگام مودیس. پژوهشهای جغرافیای طبیعی، 48(4)، 517-532.
مسعودیان، س.ا. (1399). واکاوی توزیع فراوانی دمای رویه زمین ایران با دادههای مودیس آکوآ. فصلنامه جغرافیا و توسعه، 18(60)، 21-30.
مفیدی، ع. و زرّین، آ. (1391). بررسی ماهیت، ساختار و وردایی زمانی گردش بزرگ مقیاس جو تابستانه بر روی جنوبغرب آسیا. پژوهشهای اقلیمشناسی، 11، 15-40.
Abad, B., Salahi, B., Raispour, K., De Luis, M., Serrano, R., & Moradi, M. (2022). Assessment of LST spatial and temporal changes in Jazmourian basin, southeast Iran. Physical Geography, 43(6), 809-828. Abbasi, B., Qin, Z., Du, W., Fan, J., Li, S., & Zhao, C. (2022). Spatiotemporal Variation of Land Surface Temperature Retrieved from FY-3D MERSI-II Data in Pakistan. Applied Sciences, 12(20), 10458.
Alqasemi, A. S., Hereher, M. E., Al-Quraishi, A. M. F., Saibi, H., Aldahan, A., & Abuelgasim, A. (2022). Retrieval of monthly maximum and minimum air temperature using MODIS aqua land surface temperature data over the United Arab Emirates. Geocarto International, 37(10), 2996-3013. Azarderakhsh, M., Prakash, S., Zhao, Y., & AghaKouchak, A. (2020). Satellite-based analysis of extreme land surface temperatures and diurnal variability across the hottest place on Earth. IEEE Geoscience and Remote Sensing Letters, 17(12), 2025-2029. Benali, A., Carvalho, A. C., Nunes, J. P., Carvalhais, N., & Santos, A. (2012). Estimating air surface temperature in Portugal using MODIS LST data. Remote Sensing of Environment, 124, 108-121. Didari, S., Norouzi, H., Zand-Parsa, S., & Khanbilvardi, R. (2017). Estimation of daily minimum land surface air temperature using MODIS data in southern Iran. Theor Appl Climatol, 130, 1149–1161. Duan, S. B., Li, Z. L., Wu, H., Leng, P., Gao, M., & Wang, C. (2018). Radiance-based validation of land surface temperature products derived from Collection 6 MODIS thermal infrared data. International journal of applied earth observation and geoinformation, 70, 84-92. Duan, S. B., Li, Z. L., Li, H., Göttsche, F. M., Wu, H., Zhao, W., Leng, P., Zhang, X., & Coll, C. (2019). Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote sensing of environment, 225, 16-29. Ferrigno, J. G. (1991). Glaciers of Iran. Glaciers of the Middle East and Africa: Satellite Image Atlas of Glaciers of the World, U.S. Geological Survey professional paper; 1386-G, G31-G47. Jiao, Z. H., & Mu, X. (2022). Global validation of clear-sky models for retrieving land-surface downward longwave radiation from MODIS data. Remote Sensing of Environment, 271, 112903. Karbalaee, A. R., Hedjazizadeh, Z., & Masoodian, S. A. (2023). Dependency of LSA and LST to topographic factors in Iran, based on remote sensing data. Theoretical and Applied Climatology, 1-18. Liu, Y., Yu, Y., Wang, H., & Yu, P. (2023). Land surface temperature validation. In Field Measurements for Passive Environmental Remote Sensing (pp. 375-389). Elsevier. Luo, B., Minnett, P. J., Gentemann, C., & Szczodrak, G. (2019). Improving satellite retrieved night-time infrared sea surface temperatures in aerosol-contaminated regions. Remote sensing of environment, 223, 8-20. Masoodian, S. A., & Montazeri, M. (2023). Frequency Distribution Analysis of Land Surface Temperature (LST) over Iran Using Remote Sensing Observations from Aqua MODIS. Journal of the Indian Society of Remote Sensing, 1-11. Mildrexler, D. J., Zhao, M., & Running, S. W. (2006). Where are the hottest spots on Earth? Eos, Transactions American Geophysical Union, 87(43), 461-467. Mildrexler, D. J., Zhao, M., & Running, S. W. (2011). Satellite finds highest land skin temperatures on Earth. Bulletin of the American Meteorological Society, 92(7), 855-860. Mofidi, A., & Zarrin, A. (2022). On the existence of summer Shamal wind induced by the Zagros Mountains in the Middle East. Geophys Res Lett. 49, e2022GL100151. Moradi, M., Salahi, B., & Masoodian, S. A. (2018). On the relationship between MODIS Land Surface Temperature and topography in Iran. Physical Geography, 39(4), 354-367. Moradi, M., & Darand, M. (2022). Trend analysis of land surface temperature over Iran based on land cover and topography. International Journal of Environmental Science and Technology, 19(8), 7229-7242. Moradi, M., & Salahi, B. (2023). The Comparison of MODIS Land Surface Temperature with Meteorological Stations Measurements in Iran. Journal of the Earth and Space Physics, 48(4), 161-172. Moussavi, M. S., Zoej, M. V., Vaziri, F., Sahebi, M. R., & Rezaei, Y. (2009). A new glacier inventory of Iran. Annals of Glaciology, 50(53), 93-103. Nabizada, A. F., Rousta, I., Dalvi, M., Olafsson, H., Siedliska, A., Baranowski, P., & Krzyszczak, J. (2022). Spatial and temporal assessment of remotely sensed land surface temperature variability in Afghanistan during 2000–2021. Climate, 10(7), 111. Nikolaou, N., Dallavalle, M., Stafoggia, M., Bouwer, L. M., Peters, A., Chen, K., ٌWolf, K., & Schneider, A. (2023). High-resolution spatiotemporal modeling of daily near-surface air temperature in Germany over the period 2000–2020. Environmental Research, 219, 115062. Roshan, G., Sarli, R., Ghanghermeh, A., Taherizadeh, M., & Niknam, A. (2024). Using satellite-derived land surface temperatures to clarify the spatiotemporal warming trends of the Alborz Mountains in northern Iran. J. Mt. Sci., 21, 449–469. Sarhan, E., Mofidi, A., Dadashi-Roudbari, A., Zarrin, A., & Minaei, M. (2024). Climatology of cold spots and LST minimums in Iran using high-resolution satellite data. Theor Appl Climatol., 155, 1395–1413. Shawky, M., Ahmed, M. R., Ghaderpour, E., Gupta, A., Achari, G., Dewan, A., & Hassan, Q. K. (2023). Remote sensing-derived land surface temperature trends over South Asia. Ecological Informatics, 74, 101969. Shen, S., & Leptoukh, G. G. (2011). Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature. Environmental Research Letters, 6(4), 045206. Shirgholami, M., & Masoodian, S. A. (2022). Assessment of spatial and temporal variations of land surface temperature (LST) due to elevation changes in Yazd Province, Iran. Arabian Journal of Geosciences, 15(16), 1372. Sun, Z., Wan, H., Imbery, S., Lotz, T., & King, L. (2015). Dynamics of land surface temperature in the Central Tien Shan Mountains. Mountain Research and Development, 35(4), 328-337. Wan, Z., Zhang, Y., Zhang, Q., & Li, Z. L. (2002). Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote sensing of Environment, 83(1-2), 163-180. Wan, Z. (2014). New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote sensing of Environment, 140, 36-45. Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS Journal of photogrammetry and remote sensing, 64(4), 335-344. Xing, Z., Li, Z. L., Duan, S. B., Liu, X., Zheng, X., Leng, P., Gao, M., Zhang, X., & Shang, G. (2021). Estimation of daily mean land surface temperature at global scale using pairs of daytime and nighttime MODIS instantaneous observations. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 51-67. Yang, M., Zhao, W., Zhan, Q., & Xiong, D. (2021). Spatiotemporal patterns of land surface temperature change in the Tibetan plateau based on MODIS/Terra daily product from 2000 to 2018. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 6501-6514. Yao, R., Wang, L., Huang, X., Zhang, W., Li, J., & Niu, Z. (2018). Interannual variations in surface urban heat island intensity and associated drivers in China. Journal of Environmental Management, 222, 86-94. Yu, Y., Duan, S. B., Li, Z. L., Chang, S., Xing, Z., Leng, P., & Gao, M. (2021). Interannual spatiotemporal variations of land surface temperature in China from 2003 to 2018. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 1783-1795. Zaitchik, B. F., Evans, J. P., & Smith, R. B. (2007). Regional impact of an elevated heat source: The Zagros Plateau of Iran. Journal of Climate, 20(16), 4133-4146. Zargari, M., Mofidi, A., Entezari, A., & Baaghideh, M. (2024). Climatic comparison of surface urban heat island using satellite remote sensing in Tehran and suburbs. Scientific Reports, 14(1), 643. Zarrin, A., Ghaemi, H., Azadi, M., Mofidi, A., & Mirzaei, E. (2011). The effect of the Zagros Mountains on the formation and maintenance of the Iran Anticyclone using RegCM4. Meteorology and Atmospheric Physics, 112, 91-100. Zhang, W., Huang, Y., Yu, Y., & Sun, W. (2011). Empirical models for estimating daily maximum, minimum and mean air temperatures with MODIS land surface temperatures. International Journal of Remote Sensing, 32(24), 9415-9440. Zhao, W., He, J., Wu, Y., Xiong, D., Wen, F., & Li, A. (2019). An analysis of land surface temperature trends in the central Himalayan region based on MODIS products. Remote Sensing, 11(8), 900. Zhao, Y., Norouzi, H., Azarderakhsh, M., & AghaKouchak, A. (2021). Global Patterns of Hottest, Coldest, and Extreme Diurnal Variability on Earth. Bulletin of the American Meteorological Society, 102(9), E1672-E1681.
| ||
آمار تعداد مشاهده مقاله: 323 تعداد دریافت فایل اصل مقاله: 250 |