تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,520,803 |
تعداد دریافت فایل اصل مقاله | 98,780,322 |
تأثیر نوع پوشش/کاربری زمین بر ذخیره کربن آلی خاک در منطقه ابرکوه، استان یزد | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 5، مرداد 1403، صفحه 749-765 اصل مقاله (1.87 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.369784.669620 | ||
نویسندگان | ||
جابر فلاح زاده1؛ احمد کریمی* 2؛ مهدی نادری3؛ حسین شیرانی4 | ||
1گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهرکرد | ||
2گروه علوم و مهندسی خاک، دانشکده کشاورزی دانشگاه شهرکرد | ||
3گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران | ||
4گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه ولیعصر رفسنجان، رفسنجان، ایران | ||
چکیده | ||
تبدیل خاکهای بیابانی (بدون کشت) به خاکهای کشاورزی ممکن است باعث ایجاد تغییراتی در برخی از ویژگیهای خاک شود. این پژوهش با هدف بررسی اثر تبدیل خاکهای بیابانی به کشاورزی (گندم و پسته) بر ذخیره کربن آلی و کربن آلی ذرهای خاک در منطقه ابرکوه (استان یزد) انجام شد. برای انجام این کار، سه کاربری شامل خاکهای بیابانی، مزارع گندم و باغهای پسته مورد ارزیابی قرار گرفت. 10 نمونه خاک مرکب از هر کاربری و از هر یک از دو عمق 20–0 و 40–20 سانتیمتری جمعآوری شد. pH، هدایت الکتریکی، بافت، چگالی ظاهری، کربناتکلسیم معادل، درصد کربن آلی کل و کربن آلی ذرهای خاک اندازهگیری شد. بر اساس نتایج بدستآمده، با زیر کشتبردن خاکهای بیابانی، چگالی ظاهری، درصد سنگریزه و هدایت الکتریکی خاک کاهش یافت. میزان کربن آلی در خاکهای کشت شده 8/5-4/3 برابر بیشتر از خاکهای بیابانی بود. همچنین نتایج نشاندهنده افزایش 7/5 الی 8/15 برابری کربن آلی ذرهای در خاکهای مزارع گندم و باغهای پسته در مقایسه با خاکهای بیابانی بود. کمترین میزان ذخیره کربن آلی در خاکهای بیابانی (24/0-19/0 کیلوگرم در مترمربع) مشاهده شد و بیشترین میزان آن مربوط به خاک باغهای پسته (12/1-08/1 کیلوگرم در مترمربع) بود. با توجه به یافتههای این پژوهش، به نظر میرسد کشاورزی و آبیاری پایدار خاکهای بیابانی میتواند روش مناسبی جهت افزایش ذخایر کربن آلی خاک در منطقه مورد مطالعه باشد. | ||
کلیدواژهها | ||
باغ پسته؛ ذخایر کربن؛ خاک بیابانی؛ کربن آلی ذرهای؛ مزرعه گندم | ||
عنوان مقاله [English] | ||
Effects of land use/land cover changes on soil organic carbon stocks in Abarkooh region (Yazd province) | ||
نویسندگان [English] | ||
Jaber Fallahzade1؛ Ahmad Karimi2؛ Mehdi Naderi3؛ Hossein Shirani4 | ||
1Department of Soil Science, Faculty of Agriculture, University of Shahrekord, Shahrekord, Iran | ||
2Enginering soil science, Faculty of Agriculture, Shahrekord University, Iran | ||
3Department of Soil Science, Faculty of Agriculture, University of Shahrekord, Shahrekord, Iran | ||
4Department of Soil Science, Faculty of Agriculture, Vali–e–Asr University of Rafsanjan, Rafsanjan Iran | ||
چکیده [English] | ||
Conversion of desert soils to cropland may cause changes in some soil properties. The objective of this study was to analyze the effects of converting desert soils to cropland (wheat) and orchard (pistachio) on the soil organic carbon (SOC) content and storage, particulate organic carbon in Abarkooh region (Yazd province). Three land uses included wheat, pistachio, and desert soils were assessed. In order to compare the soil properties in different land uses, In September 2018, soil samples from desert, wheat, and orchard sites were taken from 0–20 and 20–40 cm depths. From each depth, 10 composite soil samples were taken. After pretreatments of soil samples, the soil properties including electrical conductivity, pH, gravel, sand, silt, clay, bulk density, organic carbon, calcium carbonate, were measured according to standard protocols. According to the obtained results, bulk density, gravel content and electrical conductivity decreased after the cultivation of desert soils. The SOC contents in the croplands and orchard were about 3.4-5.8 times higher than those in the desert soils. Also, the results showed an increase of 5.7 to 15.8 times of soil particulate organic carbon in the wheat fields and pistachio orchards compared to desert soils. The lowest SOC storage was observed in desert soils (0.19-0.24 kg.m-2) and the highest was obtained in pistachio orchards (1.08-1.12 kg.m-2). According to the findings of this study, it seems that sustainable cultivation and irrigation of desert soils could be an appropriate method which considerably enhances soil organic carbon sequestration in the study area. | ||
کلیدواژهها [English] | ||
Carbon stocks, desert soil, particulate organic carbon, pistachio orchard, wheat field | ||
مراجع | ||
Amos, B., & Walters, D. T. (2006). Maize root biomass and net rhizodeposited carbon: an analysis of the literature. Soil Science Society of America Journal, 70(5): 1489–1503. Bongiovanni, M. D., & Lobartini, J. C. (2006). Particulate organic matter, carbohydrate, humic acid contents in soil macro– and microaggregates as affected by cultivation. Geoderma, 136: 660–665. Brar, B. S., Singh, K., & Dheri, G. S. (2013). Carbon sequestration and soil carbon pools in a rice–wheat cropping system: effect of long–term use of inorganic fertilizers and organic manure. Soil and Tillage Research, 128: 30–36. Bybordi, A., Moshiri, F., Kalantari, Oskuyi, A., & Chakherlou, S. (2021). Effect of organic fertilizers and cropping systems on carbon sequestration performance (case study of Tabriz plain). Applied Soil Research, 9(1): 130-142. (In Persian). Cambardella, C. A. & E. T. Elliott. (1992). Particulate soil organic–matter changes across a grassland cultivation sequence. Soil Science Society of America Journal. 56: 777–782. Chaudhary, S., Dheri, G. S., & Brar, B. S. (2017). Long–term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice–wheat cropping system. Soil and Tillage Research, 166: 59–66. Chen, L. F., He, Z. B., Zhao, W. Z., Liu, J. L., Zhou, H., Li, J., & Wang, L. S. (2020). Soil structure and nutrient supply drive changes in soil microbial communities during conversion of virgin desert soil to irrigated cropland. European Journal of Soil Science, 71(4): 768–781. Deng, L., Wang K., Zhu G., Liu Y., Chen L., & Shangguan, Z. (2018). Changes of soil carbon in five land use stages following 10 years of vegetation succession on the Loess Plateau, China. Catena, 171: 185-192. Dong, W. H. Zhang, S. Rao X., & Liu, C. A. (2016). Newly-reclaimed alfalfa forage land improved soil properties comparison to farmland in wheat–maize cropping systems at the margins of oases. Ecological Engineering, 94:57–64. Fallahzade, J., & Hajabbasi, M. A. (2012). The effects of irrigation and cultivation on the quality of desert soil in central Iran. Land Degradation and Development, 23(1): 53–61. Feizi, H., Maleki, S., & Poozeshi, R. (2021). Impact of vegetation cover on soil carbon storage and CO2 fixation in long-term land uses in Bajestan, Khorasan Razavi. Applied Soil Research, 8(4):181-196. (In Persian). Franzluebbers, A. J. (2002). Soil organic matter stratification ratio as an indicator of soil quality. Soil and Tillage Research, 66(2): 95–106. Gao, X., Meng, T., & Zhao, X. (2017). Variations of soil organic carbon following land use change on deep‐loess hillsopes in China. Land Degradation and Development, 28: 1902–1912. Gao, Y., Zhao, Z., Zhang, Y., & Liu, J. (2021). Response of abiotic soil CO2 flux to the difference in air-soil temperature in a desert. Science of The Total Environment, 785, 147377. Gee, G.W., & Bauder, J.W. (1986). Particle size analysis. In: Klute, A. (ed.) Methods of Soil Analysis. Part 1. Physical properties. American Society of Agronomy. Madison. Wisconsin. pp. 383–411. Ghosh, A., Bhattacharyya, R., Meena, M.C., Dwivedi, B.S., Singh, G., Agnihotri, R., & Sharma, C. (2018). Long–term fertilization effects on soil organic carbon sequestration in an Inceptisol. Soil and Tillage Research, 177: 134–144. Hu, Y.‐F., Shu, X.‐Y., & He, J. 2018. Storage of C N and P affected by afforestation with Salix cupularis in an alpine semiarid desert ecosystem. Land Degradation and Development, 29: 188–198. Jia, X., Li, Y., Wu, B., Zhou, Y., & Li, X. 2017. Effects of plant restoration on soil microbial biomass in an arid desert in northern China. Journal of Arid Environments,144: 192-200. Jones, J. B. (1999). Soil Analysis Handbook of Reference Methods. CRC Press.382p. Lal, R. 2008. Carbon sequestration. Philosophical Transactions of the Royal Society B, 363: 815-830. Li, D., & Shao, M. 2014. Soil organic carbon and influencing factors in different landscapes in an arid region of northwestern China. Catena, 116:95–104. Li, X. G., Li, Y. K., Li, F. M., Ma, Q., Zhang, P. L., & Yin, P. (2009). Changes in soil organic carbon, nutrients and aggregation after conversion of native desert soil into irrigated arable land. Soil and Tillage Research, 104(2): 263–269. Li, X., Li, Y., Xie, T., Chang, Z., & Li, X. (2022a). Recovery of soil carbon and nitrogen stocks following afforestation with xerophytic shrubs in the Tengger Desert, North China. Catena, 214, 106277. Li, Y., Xie, T., Yang, H., & Li, X. (2022b). Revegetation enhances soil organic carbon mineralization and its temperature sensitivity in the Tengger Desert, North China. Catena, 218, 106541. Li, Y., Zhang, X., Wang, B., Wu, X., Wang, Z., Liu, L., & Yang, H. (2023). Revegetation promotes soil mineral-associated organic carbon sequestration and soil carbon stability in the Tengger Desert, northern China. Soil Biology and Biochemistry, 185, 109155. Liu, H., Xu, C., Allen, C. D., Hartmann, H., Wei, X., Yakir, D., & Yu, P. (2022). Nature‐based framework for sustainable afforestation in global drylands under changing climate. Global change biology, 28(7): 2202-2220. Liu, X., Du, H., Li, S., Liu, X., Fan, Y., & Wang, T. (2023). Dynamics of soil wind erosion in the Mu Us sandy land (in northern China) affected by cropland reclamation from 2000 to 2020. Ecological Indicators, 154, 110717. Liu, Y., Dang, Z. Q., Tian, F. P., Wang, D., & Wu, G. L. (2017). Soil organic carbon and inorganic carbon accumulation along a 30-year grassland restoration chronosequence in semi-arid regions (China). Land Degradation and Development, 28: 189–198. Luciuk G. M., Boonneau M. A., Boyle D. M., & Vibery E. (2000). Prairie farm rehabilitation. Administration paper, carbon sequestration additional environmental, benefits of forests in the Prairie Farm Rehabilitation Administration (PFRA), ID N: 1967, Session, 22: 191-194. Moradi, A., Sadeghipour, A., nikoo, S., & Parvizi, Y. (2021). Effects of Land Use and Soil characteristics on Changes in Soil Organic Carbon (Case Study: Ala Area- Semnan). Desert Management, 8(16), 125-136. (In Persian). Mozaffari, H., Rezaei, M., & Ostovari, Y. (2021). Soil sensitivity to wind and water erosion as affected by land use in southern Iran. Earth, 2(2): 287–302. Powlson, D. S., Whitmore, A. P., & Gouldi, K. W. T. 2011. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European Journal of Soil Sciences, 62: 42-55. Raiesi, F. (2007). The conversion of overgrazed pastures to almond orchards and alfalfa cropping systems may favor microbial indicators of soil quality in Central Iran. Agriculture, ecosystems & environment, 121(4), 309-318. Salem, H. M., Valero, C., Muñoz, M. Á., Rodríguez, M. G., & Silva, L.L. (2015). Short–term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma, 237: 60–70. Shang, Z. H., Cao, J. J., Degen, A. A., Zhang, D. W., & Long, R. J. (2019). A four year study in a desert land area on the effect of irrigated, cultivated land and abandoned cropland on soil biological, chemical and physical properties. Catena, 175: 1–8. Six, J., Paustian, K., Elliott, E. T., & Combrink, C. (2000). Soil Structure and Organic Matter: I. Distribution of Aggregate–Size Classes and Aggregate–Associated Carbon. Soil Science Society of America Journal, 64: 681–689. Wang, S., Xu, L., Adhikari, K., & He, N. (2023a). Soil carbon sequestration potential of cultivated lands and its controlling factors in China. Science of The Total Environment, 905, 167292. Wang, X., Xu, X., Qiu, S., Zhao, S., & He, P. (2023b). Deep tillage enhanced soil organic carbon sequestration in China: A meta-analysis. Journal of Cleaner Production, 399, 136686. Wang, Y., Luo, G., Li, C., Ye, H., Shi, H., Fan, B., & Zhang, Y. (2023c). Effects of land clearing for agriculture on soil organic carbon stocks in drylands: A meta‐analysis. Global Change Biology, 29(2): 547–562. Xu, X., Wu, B., Bao, F., Gao, Y., Li, X., Cao, Y., & Liu, M. (2023). Different Responses of Growing Season Ecosystem CO2 Fluxes to Rain Addition in a Desert Ecosystem. Plants, 12(5), 1158. Yang, F., Huang, J., Zheng, X., Huo, W., Zhou, C., Wang, Y., & Sun, Y. (2022). Evaluation of carbon sink in the Taklimakan Desert based on correction of abnormal negative CO2 flux of IRGASON. Science of the Total Environment, 838, 155988. Zhang, Q., Wu, J., Lei, Y., Yang, F., Zhang, D., Zhang, K., Zhang, Q., & Cheng, X. 2018. Agricultural land use change impacts soil CO2 emission and its 13C-isotopic signature in central China. Soil and Tillage Research, 177: 105–112. Zhang, Y. Y., Zhao, W. Z., & Fu, L. (2017). Soil macropore characteristics following conversion of native desert soils to irrigated croplands in a desert–oasis ecotone Northwest China. Soil and Tillage Research, 168:176–186. Zhang, Y., Zhao, Y.C., Shi, X.Z., Lu, X.X., Yu, D.S., Wang, H.J., Sun, W.X., & Darilek, J.L. (2008). Variation of soil organic carbon estimates in mountain regions: a case study form Southwest China. Geoderma 146: 449–456. Zhao, J., Chen, S., Hu, R., & Li, Y. (2017). Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter and iron and aluminum oxides. Soil and Tillage Research, 167: 73–79. Zuo, W., Gu, B., Zou, X., Peng, K., Shan, Y., Yi, S., & Bai, Y. (2023). Soil organic carbon sequestration in croplands can make remarkable contributions to China's carbon neutrality. Journal of Cleaner Production, 382: 135268. | ||
آمار تعداد مشاهده مقاله: 144 تعداد دریافت فایل اصل مقاله: 117 |