تعداد نشریات | 161 |
تعداد شمارهها | 6,514 |
تعداد مقالات | 70,374 |
تعداد مشاهده مقاله | 123,854,712 |
تعداد دریافت فایل اصل مقاله | 97,023,388 |
بررسی تکامل کوهزایی سیستان، شرق ایران مرکزی | ||
فیزیک زمین و فضا | ||
مقاله 7، دوره 50، شماره 3، مهر 1403، صفحه 655-675 اصل مقاله (1.47 M) | ||
نوع مقاله: مروری | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2024.374683.1007598 | ||
نویسنده | ||
میثم محمودآبادی* | ||
گروه لرزه زمینساخت، پژوهشگاه بینالمللی زلزلهشناسی و مهندسی زلزله، تهران، ایران. | ||
چکیده | ||
در این مقاله، با توجه به مطالعات لرزهای، دینامیک لیتوسفر و گوشته فوقانی شرق ایران بررسی میشود و به تکامل تکتونیکی رشتهکوههای سیستان از کرتاسه تاکنون پرداخته میشود. در گذشته، با توجه به تمرکز کمتر مطالعات لرزهای بر روی این منطقه، کوهزایی این منطقه تنها از دیدگاه مطالعات زمینشناسی مورد بررسی قرار گرفته بود. مطالعات گذشته در برگیرنده پژوهشهای پترولوژی، ژئوشیمی و تکتونیکی این منطقه است و بهمنظور درک پدیدههای دینامیکی آن اطلاعات ارزشمندی را ارائه میکند. اما اکنون، با گسترش و بهرهبرداری از شبکههای لرزهنگاری مختلف، امکان دستیابی به اطلاعات دقیق ساختارهای زیرسطحی فراهم شده است که میتوانند ابعاد جدیدی از ژئودینامیک این منطقه را روشن سازند. مطالعات لرزهای اخیر، گوشتهای گرم را در زیر پوسته این منطقه آشکار میسازند، که میتواند نشاندهنده دینامیک نسبتاً فعال آن باشد. وجود لیتوسفری نازکتر از مناطق اطراف همراه با ناهنجاریهای پرسرعتی که در آستنوسفر این منطقه مشاهده میشوند، میتواند لایهشدگی و جدایش بخشهای پایینی لیتوسفر را نشان دهد. این فرایند سبب بالا آمدگی آستنوسفر و گرمشدن باقیمانده لیتوسفر و پوسته منطقه شده است. علاوهبر این، تجزیه و تحلیل توابع گیرنده، آشکارکننده پوستهای دارای ساختارهای لایهای میباشد که با شیب به سمت غرب، احتمال مشارکت زیرراندگی ورقه اوراسیا به زیر بلوک لوت در کوهزایی منطقه را میدهند؛ پدیدهای که با ضخیمشدگی پوسته نیز همراه بوده است. در مجموع، شواهد لرزهای بههمراه سایر شواهد زمینشناسی دستیابی به یک مدل جدید تکامل ساختاری برای این منطقه را میسر میسازند، که در این مطالعه ارائه میشود. | ||
کلیدواژهها | ||
دینامیک گوشته و لیتوسفر؛ رشتهکوههای شرق ایران؛ ساختار لرزهای؛ سیستان | ||
عنوان مقاله [English] | ||
Orogenic Evolution of Sistan, east of Central Iran | ||
نویسندگان [English] | ||
Meysam Mahmoodabadi | ||
Department of Seismotectonics, International Institute of Earthquake Engineering and Seismology, Tehran, Iran. | ||
چکیده [English] | ||
This paper, benefitting from seismic studies, investigates the lithospheric and upper mantle dynamics of eastern Iran, shedding light on the tectonic evolution of the Sistan mountain ranges from the Cretaceous period to the present. Historically, due to fewer seismic studies focusing on this area, the mountain ranges were only examined from a geological perspective. Previous studies encompassing petrology, geochemistry, and tectonics have provided valuable insights into understanding the dynamic phenomena of this region (e.g., Pang et al., 2013; Jentzer et al., 2022). However, with the expansion and utilization of various seismographic networks, accessing more information about subsurface structures has become feasible, potentially illuminating new dimensions of the geodynamics in this area. Recent seismic studies reveal a warm mantle beneath the crust of this region, indicating relatively active dynamics (e.g., Mahmoodabadi et al., 2023). The presence of a thinner lithosphere compared to surrounding regions, accompanied by high-velocity anomalies observed in the asthenosphere of this area, may indicate lithospheric dripping and separation of lower lithospheric portions. This process has led to the upwelling of the asthenosphere and heating of the remaining lithosphere and crust of the region (Mahmoodabadi et al., 2024). Additionally, receiver function analysis reveals crustal structures inclined towards the west, suggesting the involvement of underthrusting beneath the mountainous region, a phenomenon associated with crustal thickening (Mahmoodabadi et al., 2023). Seismic evidence, along with other geological indicators, contribute to establishing a structural evolution model for this region. The current crustal and lithospheric structure, as well as the topography of the Eastern Iranian Ranges (Sistan), have been shaped by a series of hierarchical events starting from the opening of the Sistan Ocean during the Cretaceous period (e.g., Pang et al., 2013). In the present study, we explain how subsequent intra-oceanic subduction brings the Afghan continental block to the subduction zone, resulting in crustal layering and thickening. Continental subduction is influenced by the buoyancy of the system, eventually reaching a point where buoyant forces acting on the continental lithosphere prevent further downward movement. This positive buoyancy can uplift portions of the overlying oceanic crust, leading to the entrapment of oceanic crust within the continental lithosphere, setting the stage for the existence of ophiolites in the region. The closure of remaining oceanic domains possibly played a significant role in shaping observable geological structures today. Convergence forces, combined with pressure on the remaining oceanic lithosphere, forced it to subduct beneath the Lut Block, initiating another phase of orogenesis and contributing to the formation of ophiolitic belts along the mountain ranges. Following the closure of oceanic domains, further continental subduction likely played a significant role in shaping present observed geological structures. Subsequent convergence forces led to lithospheric thickening, triggering the detachment of weaker portions of the thickened lithosphere. Thinning of the lithosphere, facilitated by asthenospheric melting and ongoing tectonic processes further enabled ductile flow in the lower crust, supported by seismic evidence such as the presence of low shear wave velocities. In summary of the findings, this study presents a new model of the tectonic evolution of the Eastern Iranian Ranges, revealing a complex interplay of diverse geological processes. These processes span from intra-oceanic subduction to continental collision, encompassing crustal thickening and lithospheric delamination. Through seismic studies and analysis of geological evidence, this research provides crucial insights into understanding the structural evolution of this region. Moreover, it offers implications for broader tectonic processes within continental collision zones. | ||
کلیدواژهها [English] | ||
Dynamics of Mantle and Lithosphere, Eastern Iranian Ranges, Seismic Structure, Sistan | ||
مراجع | ||
Afshar, A., Mahmoodabadi, M., Yaminifard, F., & Javan-Doloei, G. (2022). Crustal Structure of the Northern Lut Block in Eastern Iran Using P Wave Receiver Function Migration. Journal of Seismology and Earthquake Engineering, 24(1&2), 15-25. doi: 10.48303/jsee.2023.2000758.1057 Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B., & Wortel, R. (2011). Zagros orogeny: a subduction-dominated process. Geological Magazine, 148(5-6), 692-725. Ahmadzadeh, S., Mansouri Ghavam Abadi, F., & Javan Doloei, G., (2023). Investigation of frequency dependence of seismic coda wave quality factor in the east-northeast of Iran. Iranian Journal of Geophysics, 17(1), 147-162. Alinaghi, A., Koulakov, I., & Thybo, H. (2007). Seismic tomographic imaging of P-and S-waves velocity perturbations in the upper mantle beneath Iran. Geophysical Journal International, 169(3), 1089-1102. Angiboust, S., Agard, P., De Hoog, J. C. M., Omrani, J., & Plunder, A. (2013). Insights on deep, accretionary subduction processes from the Sistan ophiolitic “mélange”(Eastern Iran). Lithos, 156, 139-158. Arjmandzadeh, R., Karimpour, M. H., Mazaheri, S. A., Santos, J. F., Medina, J. M., & Homam, S. M. (2011). Sr–Nd isotope geochemistry and petrogenesis of the Chah-Shaljami granitoids (Lut block, eastern Iran). Journal of Asian Earth Sciences, 41(3), 283-296. Berberian, F., & Berberian, M. J. Z. H. K. H. G. E. (1981). Tectono‐plutonic episodes in Iran. Zagros Hindu Kush Himalaya Geodynamic Evolution, 3, 5-32. Berberian, M., Jackson, J.A., Qorashi, M., Talebian, M., Khatib, M., & Priestley, K., (2000). The 1994 Sefidabeh earthquakes in eastern Iran: blind thrusting and bedding‐plane slip on a growing anticline, and active tectonics of the Sistan suture zone. Geophysical Journal International, 142(2), pp.283-299. Besse, J., Torcq, F., Gallet, Y., Ricou, L.E., Krystyn, L., & Saidi, A., (1998). Late Permian to Late Triassic palaeomagnetic data from Iran: constraints on the migration of the Iranian block through the Tethyan Ocean and initial destruction of Pangaea. Geophysical Journal International, 135(1), pp.77-92. Bonnet, G., Agard, P., Angiboust, S., Monie, P., Jentzer, M., Omrani, J., Whitechurch, H., & Fournier, M. (2018). Tectonic slicing and mixing processes along the subduction interface: The Sistan example (Eastern Iran). Lithos, 310, 269-287. Bröcker, M., Rad, G.F., Burgess, R., Theunissen, S., Paderin, I., Rodionov, N., & Salimi, Z., (2013). New age constraints for the geodynamic evolution of the Sistan Suture Zone, eastern Iran. Lithos, 170, 17-34. Buck, W.R. & Toksöz, M.N., (1983). Thermal effects of continental collisions: Thickening a variable viscosity lithosphere. Tectonophysics, 100(1-3), 53-69. Camp, V.E., & Griffis, R.J., (1982). Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran. Lithos, 15(3), 221-239. Chang, S. J., & Baag, C. E. (2005). Crustal structure in southern Korea from joint analysis of teleseismic receiver functions and surface-wave dispersion. Bulletin of the Seismological Society of America, 95(4), 1516-1534. Chung, S.L., Liu, D., Ji, J., Chu, M.F., Lee, H.Y., Wen, D.J., Lo, C.H., Lee, T.Y., Qian, Q., & Zhang, Q., (2003). Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology, 31(11), 1021-1024. Delaloye, M., & Desmons, J., (1980). Ophiolites and mélange terranes in Iran: a geochronological study and its paleotectonic implications. Tectonophysics, 68(1-2), 83-111. Fotoohi Rad, G., Droop, G.T., Amini, S., & Moazzen, M., (2005). Eclogites and blueschists of the Sistan Suture Zone, eastern Iran: a comparison of P–T histories from a subduction mélange. Lithos, 84(1-2), pp.1-24. Gill, J. B. (2012). Orogenic andesites and plate tectonics, (Vol. 16). Springer Science & Business Media. Gao, Y., Chen, L., Yang, J., & Wang, K. (2023). Rheological heterogeneities control the non‐progressive uplift of the young Iranian plateau. Geophysical Research Letters, 50(3), e2022GL101829. Göğüş, O. H., & Ueda, K. (2018). Peeling back the lithosphere: Controlling parameters, surface expressions and the future directions in delamination modeling. Journal of Geodynamics, 117, 21-40. Göğüş, O. H., Pysklywec, R. N., Şengör, A. M. C., & Gün, E. (2017). Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau. Nature communications, 8(1), 1538. Helffrich, G. R., & Wood, B. J. (2001). The Earth's mantle. Nature, 412(6846), 501-507. Hopper, J. R., & Buck, W. R. (1996). The effect of lower crustal flow on continental extension and passive margin formation. Journal of Geophysical Research: Solid Earth, 101(B9), 20175-20194. Irandoust, M. A., Priestley, K., & Sobouti, F. (2022). High‐resolution lithospheric structure of the Zagros collision zone and Iranian Plateau. Journal of Geophysical Research: Solid Earth, 127(11), e2022JB025009. Jackson, J., & McKenzie, D. (1984). Active tectonics of the Alpine—Himalayan Belt between western Turkey and Pakistan. Geophysical Journal International, 77(1), 185-264. Jentzer, M., Agard, P., Bonnet, G., Monié, P., Fournier, M., Whitechurch, H., Omrani, J., Zarrinkoub, M.H., Khatib, M.M., Kohansal, R., & Do Couto, D. (2022). The North Sistan orogen (Eastern Iran): Tectono-metamorphic evolution and significance within the Tethyan realm. Gondwana Research, 109, 460-492. Jentzer, M., Fournier, M., Agard, P., Omrani, J., Khatib, M.M., & Whitechurch, H., (2017). Neogene to Present paleostress field in Eastern Iran (Sistan belt) and implications for regional geodynamics. Tectonics, 36(2), pp.321-339. Jentzer, M., Whitechurch, H., Agard, P., Ulrich, M., Caron, B., Zarrinkoub, M.H., Kohansal, R., Miguet, L., Omrani, J., & Fournier, M. (2020). Late Cretaceous calc-alkaline and adakitic magmatism in the Sistan suture zone (Eastern Iran): Implications for subduction polarity and regional tectonics. Journal of Asian Earth Sciences, 204, 104588. Kaislaniemi, L., Van Hunen, J., Allen, M.B. & Neill, I., (2014). Sublithospheric small-scale convection—a mechanism for collision zone magmatism. Geology, 42(4), 291-294. Katsura, T., Yamada, H., Nishikawa, O., Song, M., Kubo, A., Shinmei, T., Yokoshi, S., Aizawa, Y., Yoshino, T., Walter, M.J., Ito, E., & Funakoshi, K. I. (2004). Olivine‐wadsleyite transition in the system (Mg, Fe) 2SiO4. Journal of Geophysical Research: Solid Earth, 109(B2). Kaviani, A., Mahmoodabadi, M., Rümpker, G., Pilia, S., Tatar, M., Nilfouroushan, F., Yamini-Fard, F., Moradi, A., & Ali, M. Y. (2021). Mantle-flow diversion beneath the Iranian plateau induced by Zagros’ lithospheric keel. Scientific reports, 11(1), 2848. Kaviani, A., Paul, A., Moradi, A., Mai, P.M., Pilia, S., Boschi, L., Rümpker, G., Lu, Y., Tang, Z., & Sandvol, E. (2020). Crustal and uppermost mantle shear wave velocity structure beneath the Middle East from surface wave tomography. Geophysical Journal International, 221(2), 1349-1365. Kaviani, A., Sandvol, E., Moradi, A., Rümpker, G., Tang, Z., & Mai, P.M., (2018). Mantle transition zone thickness beneath the Middle East: Evidence for segmented Tethyan slabs, delaminated lithosphere, and lower mantle upwelling. Journal of Geophysical Research: Solid Earth, 123(6), 4886-4905. Kay, R.W., & Kay, S.M., (1993). Delamination and delamination magmatism. Tectonophysics, 219(1-3), 177-189. Kheirkhah, M., Neill, I., & Allen, M. B. (2015). Petrogenesis of OIB-like basaltic volcanic rocks in a continental collision zone: Late Cenozoic magmatism of Eastern Iran. Journal of Asian Earth Sciences, 106, 19-33. Kounoudis, R., Bastow, I. D., Ogden, C. S., Goes, S., Jenkins, J., Grant, B., & Braham, C. (2020). Seismic tomographic imaging of the Eastern Mediterranean mantle: Implications for terminal‐stage subduction, the uplift of Anatolia, and the development of the North Anatolian Fault. Geochemistry, Geophysics, Geosystems, 21(7), e2020GC009009. Krystopowicz, N. J., & Currie, C. A. (2013). Crustal eclogitization and lithosphere delamination in orogens. Earth and Planetary Science Letters, 361, 195-207. Maggi, A., & Priestley, K., (2005). Surface waveform tomography of the Turkish–Iranian plateau. Geophysical Journal International, 160(3), 1068-1080. Mahmoodabadi, M., Yamini-Fard, F., Irandoust, M.A., Tatar, M., Afshar-Savat, A., & SoltaniMoghadam, S., (2023). Crustal imbrication and mountain building in the Eastern Iranian Ranges; Insights from receiver function and Rayleigh wave dispersion analysis. Tectonophysics, 868, 230104. Mahmoodabadi, M., Yaminifard, F., Tatar, M., & Kaviani, A. (2020a). Shear wave velocity structure of the upper-mantle beneath the northern Zagros collision zone revealed by nonlinear teleseismic tomography and Bayesian Monte-Carlo joint inversion of surface wave dispersion and teleseismic P-wave coda. Physics of the Earth and Planetary Interiors, 300, 106444. Mahmoodabadi, M., Yaminifard, F., Tatar, M., & Moradi, A. (2020b). Layered Crustal Anisotropy in Eastern Iran. Proceedings of the the 19th Iranian Geophysical Conference, Tehran, 477-479. Mahmoodabadi, M., Yamini-Fard, F., Tatar, M., & Rashidi, A. (2024). Post-collisional lithospheric delamination in eastern Iran, revealed by non-linear teleseismic tomography and residual topography. Physics of the Earth and Planetary Interiors, 107180. Mahmoodabadi, M., Yaminifard, F., Tatar, M., Kaviani, A., & Motaghi, K. (2019). Upper-mantle velocity structure beneath the Zagros collision zone, Central Iran and Alborz from nonlinear teleseismic tomography. Geophysical Journal International, 218(1), 414-428. Ma’hood, M., Hamzehloo, H., & Doloei, G.J., (2009). Attenuation of high frequency P and S waves in the crust of the East-Central Iran. Geophysical Journal International, 179(3), 1669-1678. Mattei, M., Cifelli, F., Muttoni, G., & Rashid, H., (2015). Post-Cimmerian (Jurassic–Cenozoic) paleogeography and vertical axis tectonic rotations of Central Iran and the Alborz Mountains. Journal of Asian Earth Sciences, 102, 92-101. McKenzie, D., Nimmo, F., Jackson, J. A., Gans, P. B., & Miller, E. L. (2000). Characteristics and consequences of flow in the lower crust. Journal of Geophysical Research: Solid Earth, 105(B5), 11029-11046. Meissner, R. & Mooney, W., (1998). Weakness of the lower continental crust: a condition for delamination, uplift, and escape. Tectonophysics, 296(1-2), 47-60. Meyer, B., & K. Le Dortz (2007), Strike-slip kinematics in Central and Eastern Iran: Estimating fault slip-rates averaged over the Holocene, Tectonics, 26, TC5009, doi:10.1029/2006TC002073. Mohammadi, A., Burg, J.P., Bouilhol, P., & Ruh, J., (2016). U–Pb geochronology and geochemistry of Zahedan and Shah Kuh plutons, southeast Iran: Implication for closure of the South Sistan suture zone. Lithos, 248, 293-308. Morency, C., & Doin, M. P. (2004). Numerical simulations of the mantle lithosphere delamination. Journal of Geophysical Research: Solid Earth, 109(B3). Movaghari, R., & Javan Doloei, G. (2020). 3-D crustal structure of the Iran plateau using phase velocity ambient noise tomography. Geophysical Journal International, 220(3), 1555-1568. Movaghari, R., JavanDoloei, G., Yang, Y., Tatar, M., & Sadidkhouy, A. (2021). Crustal radial anisotropy of the Iran Plateau inferred from ambient noise tomography. Journal of Geophysical Research: Solid Earth, 126(4), e2020JB020236. Ohira, A., Kodaira, S., Nakamura, Y., Fujie, G., Arai, R. and Miura, S., (2017). Structural variation of the oceanic Moho in the Pacific plate revealed by active-source seismic data. Earth and Planetary Science Letters, 476, 111-121. Ouimet, W. B., & K. L. Cook (2010), Building the central Andes through axial lower crustal flow, Tectonics, 29, TC3010, doi:10.1029/2009TC002460. Ozsvárt, P., Bahramnejad, E., Bagheri, S., & Sharifi, M., (2020). New Albian (Cretaceous) radiolarian age constraints for the Dumak ophiolitic mélange from the Shuru area, Eastern Iran. Cretaceous Research, 111, p.104451. Pang, K.-N., Chung, S.-L., Zarrinkoub, M.H., Khatib, M.M., Mohammadi, S.S., Chiu, H.-Y., Chu, C.-H., Lee, H.-Y., Lo & C.-H., (2013). Eocene–Oligocene post-collisional magmatism in the Lut–Sistan region, eastern Iran: magma genesis and tectonic implications. Lithos, 180, 234-251. Pang, K.N., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Yang, H.M., Chu, C.H., Lee, H.Y., & Lo, C.H., (2012). Age, geochemical characteristics and petrogenesis of Late Cenozoic intraplate alkali basalts in the Lut–Sistan region, eastern Iran. Chemical Geology, 306, 40-53. Priestley, K., McKenzie, D., Barron, J., Tatar, M., & Debayle, E. (2012). The Zagros core: Deformation of the continental lithospheric mantle, Geochem. Geophys. Geosyst., 13, Q11014, doi:10.1029/2012GC004435. Rabayrol, F., Hart, C.J., & Thorkelson, D.J., (2019). Temporal, spatial and geochemical evolution of late Cenozoic post-subduction magmatism in central and eastern Anatolia, Turkey. Lithos, 336, 67-96. Rashidi, A., Kianimehr, H., Yamini-Fard, F., Tatar, M., & Zafarani, H., (2022). Present Stress Map and Deformation Distribution in the NE Lut Block, Eastern Iran: Insights from Seismic and Geodetic Strain and Moment Rates. Pure and Applied Geophysics, 179(5), 1887-1917. Rashidi, A., Shafieibafti, S., Nemati, M., Ezati, M., Gholami, E., Mousavi, S. M., & Derakhshani, R. (2023). Flexural-slip folding in buckling phases of orogenic belts: Insight into the tectonic evolution of fault splays in the East Iran orogen. Frontiers in Earth Science, 11, 1169667. Regard, V., Faccenna, C., Martinod, J., Bellier, O., & Thomas, J.C., (2003). From subduction to collision: Control of deep processes on the evolution of convergent plate boundary. Journal of Geophysical Research: Solid Earth, 108(B4). Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E., Chen, Z., Shen, F., & Liu, Y. (1997). Surface deformation and lower crustal flow in eastern Tibet. science, 276(5313), 788-790. Saccani, E., Delavari, M., Beccaluva, L., & Amini, S., (2010). Petrological and geochemical constraints on the origin of the Nehbandan ophiolitic complex (eastern Iran): Implication for the evolution of the Sistan Ocean. Lithos, 117, 209–228. Saidi, A., Brunet, M.F., & Ricou, L.E., (1997). Continental accretion of the Iran Block to Eurasia as seen from Late Paleozoic to Early Cretaceous subsidence curves. Geodinamica Acta, 10(5), 189-208. Schleiffarth, W.K., Darin, M.H., Reid, M.R., & Umhoefer, P.J., (2018). Dynamics of episodic Late Cretaceous–Cenozoic magmatism across Central to Eastern Anatolia: New insights from an extensive geochronology compilation. Geosphere, 14(5), 1990-2008. Şengör, A. M. C., Altıner, D., Cin, A., Ustaömer, T., & Hsü, K. J. (1988). Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land. Geological Society, London, Special Publications, 37(1), 119-181. Şengül Uluocak, E., Pysklywec, R., & Göğüş, O. H. (2016). Present-day dynamic and residual topography in Central Anatolia. Geophysical Journal International, 206(3), 1515-1525. Şengül Uluocak, E., Göğüş, O.H., Pysklywec, R.N., & Chen, B. (2021). Geodynamics of East Anatolia‐Caucasus Domain: Inferences From 3D Thermo‐Mechanical Models, Residual Topography, and Admittance Function Analyses. Tectonics, 40(12), p.e2021TC007031. Shad Manaman, N., Shomali, H., & Koyi, H. (2011). New constraints on upper-mantle S-velocity structure and crustal thickness of the Iranian plateau using partitioned waveform inversion. Geophysical Journal International, 184(1), 247-267. Stocklin, J. (1968). Structural history and tectonics of Iran: a review. AAPG bulletin, 52(7), 1229-1258. Tirrul, R., Bell, I. R., Griffis, R. J., & Camp, V. E. (1983). The Sistan suture zone of eastern Iran. Geological Society of America Bulletin, 94(1), 134-150. Tsuji, T., Nakamura, Y., Tokuyama, H., Coffin, M.F., & Koda, K., (2007). Oceanic crust and Moho of the Pacific Plate in the eastern Ogasawara Plateau region. Island Arc, 16(3), 361-373. Ueda, K., Gerya, T. V., & Burg, J. P. (2012). Delamination in collisional orogens: Thermomechanical modeling. Journal of Geophysical Research: Solid Earth, 117(B8). Van Wijk, J., Van Hunen, J., & Goes, S., (2008). Small-scale convection during continental rifting: Evidence from the Rio Grande rift. Geology, 36(7), 575-578. Verdel, C., Wernicke, B.P., Hassanzadeh, J., & Guest, B., (2011). A Paleogene extensional arc flare‐up in Iran. Tectonics, 30(3). Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M.R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F., & Chéry, J. (2004). Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157(1), 381-398. Walker, R.T., Gans, P., Allen, M.B., Jackson, J., Khatib, M., Marsh, N., & Zarrinkoub, M., (2009). Late Cenozoic volcanism and rates of active faulting in eastern Iran. Geophysical Journal International, 177(2), 783-805. Walpersdorf, A., Manighetti, I., Mousavi, Z., Tavakoli, F., Vergnolle, M., Jadidi, A., Hatzfeld, D., Aghamohammadi, A., Bigot, A., Djamour, Y., Nankali, H., & Sedighi, M. (2014). Present‐day kinematics and fault slip rates in eastern Iran, derived from 11 years of GPS data. Journal of Geophysical Research: Solid Earth, 119(2), 1359-1383. Wu, Z., Chen, L., Talebian, M., Wang, X., Jiang, M., Ai, Y., Lan, H., Gao, Y., Khatib, M.M., Hou, G., Chung, S.L., & Zhu, R. (2021). Lateral structural variation of the lithosphere‐asthenosphere system in the northeastern to eastern Iranian plateau and its tectonic implications. Journal of Geophysical Research: Solid Earth, 126(1), e2020JB020256. Zarrinkoub, M.H., Pang, K.-N., Chung, S.-L., Khatib, M.M., Mohammadi, S.S., Chiu, H.-Y., & Lee, H.-Y., (2012). Zircon U\Pb age and geochemical constraints on the origin of the Birjand ophiolite, Sistan suture zone, eastern Iran. Lithos, 154, 392-405. Zarunizadeh, Z., Motaghi, K., Movaghari, R., Yang, Y., & Priestley, K., (2024). Seismological constraints on the lithosphere-asthenosphere system beneath the central and east Iranian Plateau. Tectonophysics, 873, p.230215. | ||
آمار تعداد مشاهده مقاله: 325 تعداد دریافت فایل اصل مقاله: 293 |