- Afzal O, Altamimi ASA, Nadeem MS, Alzarea S, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I, Nanoparticles in Drug Delivery: From History to Therapeutic Applications. Nanomaterials (Basel). 2022;12(24):4494.
- Hong S, Choi DW, Kim HN, Park CG, Lee W, Park HH, Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics. 2020;12(7):604.
- kianfar E. Magnetic Nanoparticles in Targeted Drug Delivery: a Review. Journal of Superconductivity and Novel Magnetism. 2021;34:1709-1735.
- Stanicki D, Vangijzegem T, Ternad I, Laurent S. An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opinion on Drug Delivery. 2022;19(1):321-335.
- Benita S. Microencapsulation Methods and Industrial Applications, 2nd Edition, USA: CRC Press, 2006.
- Alromi DA, Madani SY, Seifalian A, Emerging Application of Magnetic Nanoparticles for Diagnosis and Treatment of Cancer. Polymers (Basel). 2021;13(23):4146.
- Saugandhika M, Nathalia P.“Impedance electrodes for Biological applications using carbon nanotubes [Thesis], George Mason University, 2007.
- Weng CC, Yang TA, Li. YK. Design and fabrication of cell-targeted, dual drug-loaded nanoparticles with pH-controlled drug release and near-infrared light-induced photothermal effects. Materials and Design. 2021;197:109230.
- Labhasetwar V, Song C and Levy RJ. Nanoparticle drug delivery system for restenosis. Advanced Drug Delivery Reviews. 1997;24:63-85.
- Hossein Zare H, Ahmadi S, Ghasemi A, Ghanbari M, Rabiee N, Bagherzadeh M, Karimi M, Webster TJ, Hamblin MR, Mostafavi E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. International Journal of Nanomedicine. 2021;16:1681–1706.
- Rasul MDG, Kiziltas A, Arfaei B, Shahbazian-Yassar R. 2D boron nitride nanosheets for polymer composite materials. npj 2D Materials and Applications. 2021;56.
- Li X, Hao X, Zhao M, Wu Y, Yang J, Tian Y and Qian G. Exfoliation of Hexagonal Boron Nitride by Molten Hydroxides. Advanced Materials. 2013;25:220-2204.
- 13.Ciofani G, Danti S, Alessandro DD, Moscato S and Menciassi A. Assessing cytotoxicity of boron nitride nanotubes: Interference with the MTT assay. Biochemical and Biophysical Research Communications. 2010;394:405-411.
- Li X, Zhi C, Hanagata N, Yamaguchi M, Bando Y and Golberg D. Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs. Chemical Communications. 2013;49:7337-7339.
- Gupta A, Kumar S and Kashyap A. International Journal of Innovative Research in Science. Engineering and Technology. 2013;2:1209-1215.
- Sletten E, Sletten J and Jensen LH. The Crystal and Molecular Structure of 6-Mereaptopurine Monohydrate. Acta Crystallography B. B 1969;25:1330-1338.
- Sharifi KA and Pirsa S. Biodegradable film of black mulberry pulp pectin/chlorophyll of black mulberry leaf encapsulated with carboxymethylcellulose/silica nanoparticles: Investigation of physicochemical and antimicrobial properties. Materials Chemistry and Physics 2021;267:124580.
- Sani IK, Geshlaghi SP, Pirsa S and Asdagh A. Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/microencapsulated Zat -aria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging Food Hydrocolloids. 2021;117:106719.
- Pirsa S. Biodegradable film based on pectin/Nano-clay/methylene blue: Structural and physical properties and sensing ability for measurement of vitamin C. International Journal of Biological Macromolecules. 2020;163:666-675.
- Jabraili A, Pirsa S, Pirouzifard M and Amiri S. Biodegradable nanocomposite film based on gluten/silica/calcium chloride: physicochemical properties and bioactive compounds extraction capacity. Journal of Polymers and the Environment. 2021;25:1-5.
- Hosseini SN, Pirsa S and Farzi J. Biodegradable nano composite film based on modified starch-albumin/MgO; antibacterial, antioxidant and structural properties. Polymer Testing. 2021;97:107182.
- Pourmadadi M, Rahmani Ghohrodi A, Savari Z, Talebi E, Ahamdi I, Rahdar A, Pandey S. Enhancing cancer therapy: The potential of mercaptopurine-based nanomaterials for targeted drug delivery. Next Nanotechnology. 2023;2:100018.
- Huyen DT, Bui TQ, Si NT, VuNhat P, Quy PT, Nhung NTA. Theoretical study of the binding mechanism between anticancerous drug mercaptopurine and gold nanoparticles using a cluster model. Journal of Molecular Modeling. 2023;29.
- Shannon E. Conneely, Stacy L. Cooper, and Rachel E. Rau. Use of Allopurinol to Mitigate 6-Mercaptopurine Associated Gastrointestinal Toxicity in Acute Lymphoblastic Leukemia. Front Oncol. 2020;10:1129.
- Wojtuszkiewicz A, Barcelos A, Dubbelman B, Abreu RD, Brouwer C, Bökkerink JP,de Haas V, Groot-Kruseman HD, Jansen G, Kaspers GL, Cloos J, Peters GJ. Assessment of Mercaptopurine (6MP) Metabolites and 6MP Metabolic Key-Enzymes in Childhood Acute Lymphoblastic Leukemia. Nucleosides, Nucleotides and Nucleic Acids. 2014;33:4-6.
- Baskan EB, Yilmaz M, Tunali S and Saricaoglu H. Efficacy and safety of long-term mycophenolate sodium therapy in pemphigus vulgaris. Journal of the European Academy of Dermatology and Venereology. 2009;23:1432-1434.
- Aslanzadeh SA. Adsorption of MCP drug on the BN nanotube, nanosheet and nanocluster: a density functional theory study. Molecular Physics. 2018;117:531-538.
- Yang Y and Ostadhosseini N. A theoretical investigation on the MCP drug interaction with boron nitride nanocage: Solvent and density functional effect. Physica E: Low-dimensional Systems and Nanostructures. 2021;125:14337.
- Frisch MJ, Trucks G, Schlegel HB, Scuseria GE, Robb MA and Cheeseman J. Antioxidant potential of glutathione: a theoretical study. Russian Journal of Physical Chemistry B. 2011;115:11269-11277.
- Li Z, Wan H, Shi Y and Ouyang P. Personal Experience with Four Kinds of Chemical Structure Drawing Software: Review on ChemDraw, ChemWindow, ISIS/Draw, and Chem Sketch Journal of Chemical Information and Modeling. 2004;44:1886-1890.
- Dennington R, Keith T and Millam J. Gauss View, Version 5. Semichem Inc., Shawnee Mission (2009).
- Glendening D, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F. Theoretical Chemistry Institute, University of Wisconsin, Madison WI, NBO version 5.G (2004).
- Seminario JM and Politzer P. Eds., Modern Density Function Theory, a Tool for Chemistry, Elsevier, Amsterdam (1995).
- Sharfalddin AA, Emwas AH, Jaremko M, Hussien MA. Transition metal complexes of 6-mercaptopurine: Characterization, Theoretical calculation, DNA-Binding, molecular docking, and anticancer activity. Applied Organometalic Chemistry. 2020;e6041.
- Passos Gomes GD, Alabugin I, Stereoelectronic Effects: Analysis by Computational and Theoretical Methods. Applied Theoretical Organic Chemistry. 2018:451-502.
- Suresh CH, Remya GS,| Anjalikrishna PK. Molecular electrostatic potential analysis: A powerful toolto interpret and predict chemical reactivity. WIREs Computational Molecular Science. 2022;12:e1601.
- Hosseinzadeh M, Masoudi S, Masnabadi N, Azarakhshi F. Theoretical study of encapsulation of diethylstilbestrol drug into the inner surface of BNNT toward designing a new nanocarrier for drug delivery systems. Materials Research Express. 2022;9:045002.
- Stern N, Major DT, Gottlieb HE, Weizman D, Fischer B. What is the conformation of physiologically-active dinucleoside polyphosphates in solution? Conformational analysis of free dinucleoside polyphosphates by NMR and molecular dynamics simulationsOrganic and Biomolecular Chemistry. 2010;8:4637–4652.
- Masnabadi N. DFT study and NBO analysis of conformation properties of 2,5,5-trimethyl-1,3,2-dioxaphosphinane 2-selenide and their dithia and diselena analogous. Journal of Sciences, Islamic Republic of Iran 2020;31:137-46.
- Danaie E, Masoudi S, Masnabadi N A Computational Study of the Conformational Behavior of 2, 5-Dimethyl-1, 4-dithiane-2, 5-diol and Analogous S and Se: DFT and NBO Study. Letters in Organic Chemistry. 2020;1:749-59.
- Parthasarathi R, Padmanabhan J, Elango M, Subramanian V. and hattaraj P.K. Intermolecular reactivity through the generalized philicity concept. Chemical Physics Letters. 2004;394:225-230.
- Boto RA, Peccati F, Laplaza R, Quan C. NCIPLOT4: Fast, Robust, and Quantitative Analysis of Noncovalent Interactions. Journal of Chemical Theory and Computation. 2020;16(7):4150–4158.
- Akman F, Demirpolat A, Kazachenko AS, Kazachenko AS, Issaoui N, Al-Dossary O, Molecular Structure, Electronic Properties, Reactivity (ELF, LOL, and Fukui), and NCI-RDG Studies of the Binary Mixture of Water and Essential Oil of Phlomis bruguieri. Molecules. 2023;28(6): 2684.
- Saleh G, Gatti C, Presti LL. Non-covalent interaction via the reduced density gradient: Independent atom model vs experimental multipolar electron densities. Computational and Theoretical Chemistry. 2012; 998:148-163.
- Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W. Revealing noncovalent interactions. Journal of the American Chemical Society. 2010;132(18):6498-506.
|